
1

C Programming

An Introduction

About C

As a programming language, C is rather like Pascal or Fortran.. Values are stored in variables.
Programs are structured by defining and calling functions. Program flow is controlled using loops, if
statements and function calls. Input and output can be directed to the terminal or to files. Related data
can be stored together in arrays or structures.

Of the three languages, C allows the most precise control of input and output. C is also rather more
terse than Fortran or Pascal. This can result in short efficient programs, where the programmer has
made wise use of C's range of powerful operators. It also allows the programmer to produce programs
which are impossible to understand.

Programmers who are familiar with the use of pointers (or indirect addressing, to use the correct term)
will welcome the ease of use compared with some other languages. Undisciplined use of pointers can
lead to errors which are very hard to trace. This course only deals with the simplest applications of
pointers.

It is hoped that newcomers will find C a useful and friendly language. Care must be taken in using C.
Many of the extra facilities which it offers can lead to extra types of programming error. You will have
to learn to deal with these to successfully make the transition to being a C programmer.

Common C

Until recently there was one dominant form of the C language. This was the native UNIX form, which
for historical reasons is known as either Bell Labs C, after the most popular compiler, or K. &R. C,
after the authors of the most popular textbook on the language. It is now often called "Classic C"

ANSI C

The American National Standards Institute defined a standard for C, eliminating much uncertainty
about the exact syntax of the language. This newcomer, called ANSI C, proclaims itself the standard
version of the language. As such it will inevitably overtake, and eventually replace common C.

ANSI C does incorporate a few improvements over the old common C. The main difference is in the
grammar of the language. The form of function declarations has been changed making them rather
more like Pascal procedures.

2

This course introduces ANSI C since it is supported by the SUN workstation compilers. Most C
programming texts are now available in ANSI editions.

A Simple Program

The following program is written in the C programming language.

#include <stdio.h>

main()
{

printf("Programming in C is easy.\n");
}

A NOTE ABOUT C PROGRAMS
In C, lowercase and uppercase characters are very important! All commands in C must be lowercase.
The C programs starting point is identified by the word

main()

This informs the computer as to where the program actually starts. The brackets that follow the
keyword main indicate that there are no arguments supplied to this program (this will be examined
later on).

The two braces, { and }, signify the begin and end segments of the program. The purpose of the
statment

include <stdio.h>

is to allow the use of the printf statement to provide program output. Text to be displayed by printf()
must be enclosed in double quotes. The program has only one statement

printf("Programming in C is easy.\n");

printf() is actually a function (procedure) in C that is used for printing variables and text. Where text
appears in double quotes "", it is printed without modification. There are some exceptions however.
This has to do with the \ and % characters. These characters are modifier's, and for the present the \
followed by the n character represents a newline character. Thus the program prints

Programming in C is easy.

and the cursor is set to the beginning of the next line. As we shall see later on, what follows the \
character will determine what is printed, ie, a tab, clear screen, clear line etc. Another important thing
to remember is that all C statements are terminated by a semi-colon ;

Summary of major points:
 program execution begins at main()

3

 keywords are written in lower-case
 statements are terminated with a semi-colon
 text strings are enclosed in double quotes
 C is case sensitive, use lower-case and try not to capitalise variable names
 \n means position the cursor on the beginning of the next line
 printf() can be used to display text to the screen
 The curly braces {} define the beginning and end of a program block.

EXERCISE C1:
What will the following program output?

#include <stdio.h>

main()
{

printf("Programming in C is easy.\n");
printf("And so is Pascal.\n");

}
@ Programming in C is easy.

And so is Pascal.

And this program?

#include <stdio.h>

main()
{

printf("The black dog was big. ");
printf("The cow jumped over the moon.\n");

}
@ The black dog was big. The cow jumped over the moon.

_

Another thing about programming in C is that it is not necessary to repeatedly call the printf routine,
so try and work out what the following program displays,

#include <stdio.h>

main()
{

printf("Hello...\n..oh my\n...when do i stop?\n");
}

@ Hello...
..oh my
...when do i stop?
_

4

VARIABLES
C provides the programmer with FOUR basic data types. User defined variables must be declared
before they can be used in a program.

Get into the habit of declaring variables using lowercase characters. Remember that C is case
sensitive, so even though the two variables listed below have the same name, they are considered
different variables in C.

sum
Sum

The declaration of variables is done after the opening brace of main(),

#include <stdio.h>

main()
{

int sum;

sum = 500 + 15;
printf("The sum of 500 and 15 is %d\n", sum);

}

It is possible to declare variables elsewhere in a program, but lets start simply and then get into
variations later on.

The basic format for declaring variables is

data_type var, var, ... ;

where data_type is one of the four basic types, an integer, character, float, or double type.

The program declares the variable sum to be of type INTEGER (int). The variable sum is then assigned
the value of 500 + 15 by using the assignment operator, the = sign.

sum = 500 + 15;

Now lets look more closely at the printf() statement. It has two arguments, separated by a comma. Lets
look at the first argument,

"The sum of 500 and 15 is %d\n"

The % sign is a special character in C. It is used to display the value of variables. When the program is
executed, C starts printing the text until it finds a % character. If it finds one, it looks up for the next
argument (in this case sum), displays its value, then continues on.

The d character that follows the % indicates that a decimal integer is expected. So, when the %d sign
is reached, the next argument to the printf() routine is looked up (in this case the variable sum, which
is 515), and displayed. The \n is then executed which prints the newline character.

The output of the program is thus,

5

http://www.dsi.unive.it/~franz/c_program/c_000.htm#printf
http://www.dsi.unive.it/~franz/c_program/c_006.htm

The sum of 500 and 15 is 515
_

Some of the formatters for printf are,
Cursor Control Formatters
\n newline
\t tab
\r carriage return
\f form feed
\v vertical tab

Variable Formatters
%d decimal integer
%c character
%s string or character array
%f float
%e double

The following program prints out two integer values separated by a TAB
It does this by using the \t cursor control formatter

#include <stdio.h>

main()
{

int sum, value;

sum = 10;
value = 15;
printf("%d\t%d\n", sum, value);

}

Program output looks like
10 15
_

EXERCISE C2:
What is the output of the following program?

#include <stdio.h>

main()
{

int value1, value2, sum;

value1 = 35;
value2 = 18;
sum = value1 + value2;

6

printf("The sum of %d and %d is %d\n", value1, value2, sum);
}

@ The sum of 35 and 18 is 53
_

Note that the program declares three variables, all integers, on the same declaration line. This could've
been done by three separate declarations,

int value1;
int value2;
int sum;

COMMENTS
The addition of comments inside programs is desirable. These may be added to C programs by
enclosing them as follows,

/* bla bla bla bla bla bla */

Note that the /* opens the comment field and */ closes the comment field. Comments may span
multiple lines. Comments may not be nested one inside another.

/* this is a comment. /* this comment is inside */ wrong */

In the above example, the first occurrence of */ closes the comment statement for the entire line,
meaning that the text wrong is interpreted as a C statement or variable, and in this example, generates
an error.

What Comments Are Used For
 documentation of variables and their usage
 explaining difficult sections of code
 describes the program, author, date, modification changes, revisions etc
 copyrighting

Basic Structure of C Programs
C programs are essentially constructed in the following manner, as a number of well defined sections.

/* HEADER SECTION */
/* Contains name, author, revision number*/

/* INCLUDE SECTION */
/* contains #include statements */

/* CONSTANTS AND TYPES SECTION */
/* contains types and #defines */

/* GLOBAL VARIABLES SECTION */
/* any global variables declared here */

7

/* FUNCTIONS SECTION */
/* user defined functions */

/* main() SECTION */

int main()
{

}

Adhering to a well defined structured layout will make your programs
 easy to read
 easy to modify
 consistent in format
 self documenting

MORE ABOUT VARIABLES
Variables must begin with a character or underscore, and may be followed by any combination of
characters, underscores, or the digits 0 - 9. The following is a list of valid variable names,

summary
exit_flag
i
Jerry7
Number_of_moves
_valid_flag

You should ensure that you use meaningful names for your variables. The reasons for this are,

 meaningful names for variables are self documenting (see what they do at a glance)
 they are easier to understand
 there is no correlation with the amount of space used in the .EXE file
 makes programs easier to read

EXERCISE C3:
Why are the variables in the following list invalid,

value$sum
exit flag
3lotsofmoney
char

@ value$sum contains a $

exit flag contains a space
3lotsofmoney begins with a digit
char is a reserved keyword

8

VARIABLE NAMES AND PREFIXES WHEN WRITING WINDOWS OR OS/2 PROGRAMS
During the development of OS/2, it became common to add prefix letters to variable names to indicate
the data type of variables.

This enabled programmers to identify the data type of the variable without looking at its declaration,
thus they could easily check to see if they were performing the correct operations on the data type and
hopefully, reduce the number of errors.

Prefix Purpose or Type
b a byte value
c count or size
clr a variable that holds a color
f bitfields or flags
h a handle
hwnd a window handle
id an identity
l a long integer
msg a message
P a Pointer
rc return value
s short integer
ul unsigned long integer
us unsigned short integer
sz a null terminated string variable
psz a pointer to a null terminated string variable

DATA TYPES AND CONSTANTS
The four basic data types are

 INTEGER
These are whole numbers, both positive and negative. Unsigned integers (positive values only)
are supported. In addition, there are short and long integers.

The keyword used to define integers is,

 int

An example of an integer value is 32. An example of declaring an integer variable called sum
is,

 int sum;
sum = 20;

 FLOATING POINT
These are numbers which contain fractional parts, both positive and negative. The keyword
used to define float variables is,

9

 float

An example of a float value is 34.12. An example of declaring a float variable called money is,

 float money;
money = 0.12;

 DOUBLE
These are exponetional numbers, both positive and negative. The keyword used to define
double variables is,

 double

An example of a double value is 3.0E2. An example of declaring a double variable called big
is,

 double big;
big = 312E+7;

 CHARACTER
These are single characters. The keyword used to define character variables is,

 char

An example of a character value is the letter A. An example of declaring a character variable
called letter is,

 char letter;
letter = 'A';

Note the assignment of the character A to the variable letter is done by enclosing the value in
single quotes. Remember the golden rule: Single character - Use single quotes.

Sample program illustrating each data type

#include < stdio.h >

10

main()
{

int sum;
float money;
char letter;
double pi;

sum = 10; /* assign integer value */
money = 2.21; /* assign float value */
letter = 'A'; /* assign character value */
pi = 2.01E6; /* assign a double value */

printf("value of sum = %d\n", sum);
printf("value of money = %f\n", money);
printf("value of letter = %c\n", letter);
printf("value of pi = %e\n", pi);

}

Sample program output
value of sum = 10
value of money = 2.210000
value of letter = A
value of pi = 2.010000e+06

INITIALISING DATA VARIABLES AT DECLARATION TIME
Unlike PASCAL, in C variables may be initialised with a value when they are declared. Consider the
following declaration, which declares an integer variable count which is initialised to 10.

 int count = 10;

SIMPLE ASSIGNMENT OF VALUES TO VARIABLES
The = operator is used to assign values to data variables. Consider the following statement, which
assigns the value 32 an integer variable count, and the letter A to the character variable letter

 count = 32;
 letter = 'A';

THE VALUE OF VARIABLES AT DECLARATION TIME
Lets examine what the default value a variable is assigned when its declared. To do this, lets consider
the following program, which declares two variables, count which is an integer, and letter which is a
character.

Neither variable is pre-initialised. The value of each variable is printed out using a printf() statement.

#include <stdio.h>

11

main()
{

int count;
char letter;

printf("Count = %d\n", count);
printf("Letter = %c\n", letter);

}

Sample program output
Count = 26494
Letter = f

It can be seen from the sample output that the values which each of the variables take on at declaration
time are no-zero. In C, this is common, and programmers must ensure that variables are assigned
values before using them.

If the program was run again, the output could well have different values for each of the variables. We
can never assume that variables declare in the manner above will take on a specific value.

Some compilers may issue warnings related to the use of variables, and Turbo C from Borland issues
the following warning,

possible use of 'count' before definition in function main

RADIX CHANGING
Data numbers may be expressed in any base by simply altering the modifier, eg, decimal, octal, or
hexadecimal. This is achieved by the letter which follows the % sign related to the printf argument.

#include <stdio.h>

main() /* Prints the same value in Decimal, Hex and Octal */
{

int number = 100;

printf("In decimal the number is %d\n", number);
printf("In hex the number is %x\n", number);
printf("In octal the number is %o\n", number);
/* what about %X\n as an argument? */

}

Sample program output
In decimal the number is 100
In hex the number is 64
In octal the number is 144

Note how the variable number is initialised to zero at the time of its declaration.

12

DEFINING VARIABLES IN OCTAL AND HEXADECIMAL
Often, when writing systems programs, the programmer needs to use a different number base rather
than the default decimal.

Integer constants can be defined in octal or hex by using the associated prefix, eg, to define an integer
as an octal constant use %o

int sum = %o567;

To define an integer as a hex constant use %0x

int sum = %0x7ab4;
int flag = %0x7AB4; /* Note upper or lowercase hex ok */

MORE ABOUT FLOAT AND DOUBLE VARIABLES
C displays both float and double variables to six decimal places. This does NOT refer to the precision
(accuracy) of which the number is actually stored, only how many decimal places printf() uses to
display these variable types.

The following program illustrates how the different data types are declared and displayed,

#include <stdio.h>

main()
{

int sum = 100;
char letter = 'Z';
float set1 = 23.567;
double num2 = 11e+23;

printf("Integer variable is %d\n", sum);
printf("Character is %c\n", letter);
printf("Float variable is %f\n", set1);
printf("Double variable is %e\n", num2);

}

Sample program output
Integer variable is 100
Character variable is Z
Float variable is 23.567000
Double variable is 11.000000e23

To change the number of decimal places printed out for float or double variables, modify the %f or %e
to include a precision value, eg,

printf("Float variable is %.2f\n", set1);

In this case, the use of %.2f limits the output to two decimal places, and the output now looks like
Sample program output
Integer variable is 100
Character variable is Z

13

Float variable is 23.56
Double variable is 11.000000e23

SPECIAL NOTE ABOUT DATA TYPE CONVERSION
Consider the following program,

#include <stdio.h>

main()
{

int value1 = 12, value2 = 5;
float answer = 0;

answer = value1 / value2;
printf("The value of %d divided by %d is %f\n",value1,value2,answer

);
}

Sample program output
The value of 12 divided by 5 is 2.000000

Even though the above declaration seems to work, it is not always 100% reliable. Note how answer
does not contain a proper fractional part (ie, all zero's).

To ensure that the correct result always occurs, the data type of value1 and value2 should be converted
to a float type before assigning to the float variable answer. The following change illustrates how this
can be done,

answer = (float)value1 / (float)value2;

DIFFERENT TYPES OF INTEGERS
A normal integer is limited in range to +-32767. This value differs from computer to computer. It is
possible in C to specify that an integer be stored in four memory locations instead of the normal two.
This increases the effective range and allows very large integers to be stored. The way in which this is
done is as follows,

long int big_number = 245032L;

To display a long integer, use %l, ie,

printf("A larger number is %l\n", big_number);

Short integers are also available, eg,

short int small_value = 114h;
printf("The value is %h\n", small_value);

Unsigned integers (positive values only) can also be defined.

14

The size occupied by integers varies upon the machine hardware. ANSI C (American National
Standards Institute) has tried to standardise upon the size of data types, and hence the number range of
each type.

The following information is from the on-line help of the Turbo C compiler,
Type: int
 Integer data type

Variables of type int are one word in length.
They can be signed (default) or unsigned,
which means they have a range of -32768 to
32767 and 0 to 65535, respectively.

Type modifiers: signed, unsigned, short, long

A type modifier alters the meaning of the base
type to yield a new type. Each of the above
can be applied to the base type int. The
modifiers signed and unsigned can be applied
to the base type char. In addition, long can
be applied to double. When the base type is
ommitted from a declaration, int is assumed.

Examples:
long x; /* int is implied */
unsigned char ch;
signed int i; /* signed is default */
unsigned long int l; /* int ok, not needed */

PREPROCESSOR STATEMENTS
The define statement is used to make programs more readable. Consider the following examples,

#define TRUE 1 /* Don't use a semi-colon , # must be first character
on line */

#define FALSE 0
#define NULL 0
#define AND &
#define OR |
#define EQUALS ==

game_over = TRUE;
while(list_pointer != NULL)

................

Note that preprocessor statements begin with a # symbol, and are NOT terminated by a semi-colon.
Traditionally, preprocessor statements are listed at the beginning of the source file.

Preprocessor statements are handled by the compiler (or preprocessor) before the program is actually
compiled. All # statements are processed first, and the symbols (like TRUE) which occur in the C

15

program are replaced by their value (like 1). Once this substitution has taken place by the
preprocessor, the program is then compiled.

In general, preprocessor constants are written in UPPERCASE.

Click here for more information of preprocessor statements, including macros.

Exercise C4:
Use pre-processor statements to replace the following constants

0.312
W
37

@ Use pre-processor statements to replace the following constants

0.312
W
37

#define smallvalue 0.312
#define letter 'W'
#define smallint 37

LITERAL SUBSTITUTION OF SYMBOLIC CONSTANTS USING #define
Lets now examine a few examples of using these symbolic constants in our programs. Consider the
following program which defines a constant called TAX_RATE.

#include <stdio.h>

#define TAX_RATE 0.10

main()
{

float balance;
float tax;

balance = 72.10;
tax = balance * TAX_RATE;
printf("The tax on %.2f is %.2f\n", balance, tax);

}

The pre-processor first replaces all symbolic constants before the program is compiled, so after
preprocessing the file (and before its compiled), it now looks like,

#include <stdio.h>

#define TAX_RATE 0.10

16

main()
{

float balance;
float tax;

balance = 72.10;
tax = balance * 0.10;
printf("The tax on %.2f is %.2f\n", balance, tax);

}

YOU CANNOT ASSIGN VALUES TO THE SYMBOLIC CONSTANTS
Considering the above program as an example, look at the changes we have made below. We have
added a statement which tries to change the TAX_RATE to a new value.

#include <stdio.h>

#define TAX_RATE 0.10

main ()
{

float balance;
float tax;

balance = 72.10;
TAX_RATE = 0.15;
tax = balance * TAX_RATE;
printf("The tax on %.2f is %.2f\n", balance, tax);

}

This is illegal. You cannot re-assign a new value to a symbolic constant.

ITS LITERAL SUBSTITUTION, SO BEWARE OF ERRORS
As shown above, the preprocessor performs literal substitution of symbolic constants. Lets modify the
previous program slightly, and introduce an error to highlight a problem.

#include <stdio.h>

#define TAX_RATE 0.10;

main()
{

float balance;
float tax;

balance = 72.10;
tax = (balance * TAX_RATE)+ 10.02;
printf("The tax on %.2f is %.2f\n", balance, tax);

}

In this case, the error that has been introduced is that the #define is terminated with a semi-colon. The
preprocessor performs the substitution and the offending line (which is flagged as an error by the
compiler) looks like

17

tax = (balance * 0.10;)+ 10.02;

However, you do not see the output of the preprocessor. If you are using TURBO C, you will only see
tax = (balance * TAX_RATE)+ 10.02;

flagged as an error, and this actually looks okay (but its not! after substitution takes place).

MAKING PROGRAMS EASY TO MAINTAIN BY USING #define
The whole point of using #define in your programs is to make them easier to read and modify.
Considering the above programs as examples, what changes would you need to make if the
TAX_RATE was changed to 20%.

Obviously, the answer is once, where the #define statement which declares the symbolic constant and
its value occurs. You would change it to read

#define TAX_RATE = 0.20

Without the use of symbolic constants, you would hard code the value 0.20 in your program, and this
might occur several times (or tens of times).

This would make changes difficult, because you would need to search and replace every occurrence in
the program. However, as the programs get larger, what would happen if you actually used the
value 0.20 in a calculation that had nothing to do with the TAX_RATE!

SUMMARY OF #define
 allow the use of symbolic constants in programs
 in general, symbols are written in uppercase
 are not terminated with a semi-colon
 generally occur at the beginning of the file
 each occurrence of the symbol is replaced by its value
 makes programs readable and easy to maintain

HEADER FILES
Header files contain definitions of functions and variables which can be incorporated into any C
program by using the pre-processor #include statement. Standard header files are provided with each
compiler, and cover a range of areas, string handling, mathematical, data conversion, printing and
reading of variables.

To use any of the standard functions, the appropriate header file should be included. This is done at the
beginning of the C source file. For example, to use the function printf() in a program, the line

#include <stdio.h>

should be at the beginning of the source file, because the definition for printf() is found in the file
stdio.h All header files have the extension .h and generally reside in the /include subdirectory.

 #include <stdio.h>

18

 #include "mydecls.h"
The use of angle brackets <> informs the compiler to search the compilers include
directory for the specified file. The use of the double quotes "" around the
filename inform the compiler to search in the current directory for the specified
file.

Practise Exercise 1: Defining Variables

1. Declare an integer called sum

2. Declare a character called letter

3. Define a constant called TRUE which has a value of 1

4. Declare a variable called money which can be used to hold currency

5. Declare a variable called arctan which will hold scientific notation values (+e)

6. Declare an integer variable called total and initialise it to zero.

7. Declare a variable called loop, which can hold an integer value.

8. Define a constant called GST with a value of .125

Answers to Practise Exercise 1: Defining Variables

1. Declare an integer called sum

int sum;

2. Declare a character called letter

char letter;

3. Define a constant called TRUE which has a value of 1

#define TRUE 1

4. Declare a variable called money which can be used to hold currency

float money;

19

5. Declare a variable called arctan which will hold scientific notation values (+e)

double arctan;

6. Declare an integer variable called total and initialise it to zero.

int total;
total = 0;

7. Declare a variable called loop, which can hold an integer value.

int loop;

8. Define a constant called GST with a value of .125

#define GST 0.125

ARITHMETIC OPERATORS
The symbols of the arithmetic operators are:-

Operation Operator Comment Value of Sum before Value of sum after

Multiply * sum = sum * 2; 4 8

Divide / sum = sum / 2; 4 2

Addition + sum = sum + 2; 4 6

Subtraction - sum = sum -2; 4 2

Increment ++ ++sum; 4 5

Decrement -- --sum; 4 3

Modulus % sum = sum % 3; 4 1

The following code fragment adds the variables loop and count together, leaving the result in the
variable sum

 sum = loop + count;

20

Note: If the modulus % sign is needed to be displayed as part of a text string, use two, ie %%

#include <stdio.h>

main()
{

int sum = 50;
float modulus;

 modulus = sum % 10;

printf("The %% of %d by 10 is %f\n", sum, modulus);
}

EXERCISE C5:

What does the following change do to the printed output of the previous program?

printf("The %% of %d by 10 is %.2f\n", sum, modulus);

@ #include <stdio.h>

main()
{

int sum = 50;
float modulus;

 modulus = sum % 10;

printf("The %% of %d by 10 is %.2f\n", sum, modulus);
}

The % of 50 by 10 is 0.00
_

Practise Exercise 2: Assignments

1. Assign the value of the variable number1 to the variable total

2. Assign the sum of the two variables loop_count and petrol_cost to the variable sum

3. Divide the variable total by the value 10 and leave the result in the variable discount

4. Assign the character W to the char variable letter

5. Assign the decimal result of dividing the integer variable sum by 3 into the float variable costing.
Use type casting to ensure that the remainder is also held by the float variable.

21

Answers: Practise Exercise 2: Assignments

1. Assign the value of the variable number1 to the variable total

total = number1;

2. Assign the sum of the two variables loop_count and petrol_cost to the variable sum

sum = loop_count + petrol_cost;

3. Divide the variable total by the value 10 and leave the result in the variable discount

discount = total / 10;

4. Assign the character W to the char variable letter

letter = 'W';

5. Assign the decimal result of dividing the integer variable sum by 3 into the float variable costing.
Use type casting to ensure that the remainder is also held by the float variable.

costing = (float) sum / 3;

PRE/POST INCREMENT/DECREMENT OPERATORS
PRE means do the operation first followed by any assignment operation. POST means do the operation
after any assignment operation. Consider the following statements

++count; /* PRE Increment, means add one to count */
count++; /* POST Increment, means add one to count */

In the above example, because the value of count is not assigned to any variable, the effects of the
PRE/POST operation are not clearly visible.

Lets examine what happens when we use the operator along with an assignment operation. Consider
the following program,

22

#include <stdio.h>

main()
{

int count = 0, loop;

loop = ++count; /* same as count = count + 1; loop = count; */
printf("loop = %d, count = %d\n", loop, count);

loop = count++; /* same as loop = count; count = count + 1; */
printf("loop = %d, count = %d\n", loop, count);

}

If the operator precedes (is on the left hand side) of the variable, the operation is performed first, so the
statement

loop = ++count;

really means increment count first, then assign the new value of count to loop.

Which way do you write it?
Where the increment/decrement operation is used to adjust the value of a variable, and is not involved
in an assignment operation, which should you use,

++loop_count;
or

loop_count++;

The answer is, it really does not matter. It does seem that there is a preference amongst C programmers
to use the post form.

Something to watch out for
Whilst we are on the subject, do not get into the habit of using a space(s) between the variable name
and the pre/post operator.

loop_count ++;

Try to be explicit in binding the operator tightly by leaving no gap.

GOOD FORM
Perhaps we should say programming style or readability. The most common complaints we would
have about beginning C programmers can be summarised as,

 they have poor layout
 their programs are hard to read

Your programs will be quicker to write and easier to debug if you get into the habit of actually
formatting the layout correctly as you write it.

For instance, look at the program below

23

#include<stdio.h>
main()
 {
 int sum,loop,kettle,job;
 char Whoknows;

 sum=9;
 loop=7;

 whoKnows='A';
printf("Whoknows=%c,Kettle=%d\n",whoknows,kettle);
}

It is our contention that the program is hard to read, and because of this, will be difficult to debug for
errors by an inexperienced programmer. It also contains a few deliberate mistakes!

Okay then, lets rewrite the program using good form.

#include <stdio.h>

main()
{

int sum, loop, kettle, job;
char whoknows;

sum = 9;
loop = 7;
whoknows = 'A';
printf("Whoknows = %c, Kettle = %d\n", whoknows, kettle);

}

We have also corrected the mistakes. The major differences are
 the { and } braces directly line up underneath each other

This allows us to check ident levels and ensure that statements belong to the correct block of
code. This becomes vital as programs become more complex

 spaces are inserted for readability
We as humans write sentences using spaces between words. This helps our comprehension of
what we read (if you dont believe me, try reading the following sentence.
wishihadadollarforeverytimeimadeamistake. The insertion of spaces will also help us identify
mistakes quicker.

 good indentation
Indent levels (tab stops) are clearly used to block statements, here we clearly see and identify
functions, and the statements which belong to each { } program body.

Programs to help you
There are a number of shareware programs available in the public domain which will assist you in the
areas of available to [registered users only]

 checking for code correctness
 converting between tabs and spaces

24

 formatting the layout with indentation etc
 building a tree representation of program flow
 generating cross references
 checking syntax

Please note that the above are all MSDOS based programs. Perhaps the most famous of all C program
utilities is lint.

KEYBOARD INPUT
There is a function in C which allows the programmer to accept input from a keyboard. The following
program illustrates the use of this function,

#include <stdio.h>

main() /* program which introduces keyboard input */
{

int number;

printf("Type in a number \n");
scanf("%d", &number);
printf("The number you typed was %d\n", number);

}

An integer called number is defined. A prompt to enter in a number is then printed using the statement

printf("Type in a number \n:");

The scanf routine, which accepts the response, has two arguments. The first ("%d") specifies what type
of data type is expected (ie char, int, or float).

The second argument (&number) specifies the variable into which the typed response will be placed.
In this case the response will be placed into the memory location associated with the variable number.

This explains the special significance of the & character (which means the address of).

Sample program illustrating use of scanf() to read integers, characters and floats

#include < stdio.h >

main()
{

int sum;
char letter;
float money;

printf("Please enter an integer value ");
scanf("%d", &sum);

25

printf("Please enter a character ");
/* the leading space before the %c ignores space characters in the

input */
scanf(" %c", &letter);

printf("Please enter a float variable ");
scanf("%f", &money);

printf("\nThe variables you entered were\n");
printf("value of sum = %d\n", sum);
printf("value of letter = %c\n", letter);
printf("value of money = %f\n", money);

}

This program illustrates several important points.

 the c language provides no error checking for user input. The user is expected to enter the
correct data type. For instance, if a user entered a character when an integer value was
expected, the program may enter an infinite loop or abort abnormally.

 its up to the programmer to validate data for correct type and range of values.

Practise Exercise 3: printf() and scanf()

1. Use a printf statement to print out the value of the integer variable sum

2. Use a printf statement to print out the text string "Welcome", followed by a newline.

3. Use a printf statement to print out the character variable letter

4. Use a printf statement to print out the float variable discount

5. Use a printf statement to print out the float variable dump using two decimal places

6. Use a scanf statement to read a decimal value from the keyboard, into the integer variable sum

7. Use a scanf statement to read a float variable into the variable discount_rate

8. Use a scanf statement to read a single character from the keyboard into the variable operator. Skip
leading blanks, tabs and newline characters.

Answers: Practise Exercise 3: printf() and scanf()

1. Use a printf statement to print out the value of the integer variable sum

26

printf("%d", sum);

2. Use a printf statement to print out the text string "Welcome", followed by a newline.

printf("Welcome\n");

3. Use a printf statement to print out the character variable letter

printf("%c", letter);

4. Use a printf statement to print out the float variable discount

printf("%f", discount);

5. Use a printf statement to print out the float variable dump using two decimal places

printf("%.2f", dump);

6. Use a scanf statement to read a decimal value from the keyboard, into the integer variable sum

scanf("%d", &sum);

7. Use a scanf statement to read a float variable into the variable discount_rate

scanf("%f", &discount_rate);

8. Use a scanf statement to read a single character from the keyboard into the variable operator. Skip
leading blanks, tabs and newline characters.

scanf(" %c", &operator);

THE RELATIONAL OPERATORS
These allow the comparision of two or more variables.

27

 == equal to
 != not equal
 < less than
 <= less than or equal to
 > greater than
 >= greater than or equal to

In the next few screens, these will be used in for loops and if statements.

The operator

<>

may be legal in Pascal, but is illegal in C.

ITERATION, FOR LOOPS
The basic format of the for statement is,

for(start condition; continue condition; re-evaulation)
program statement;

/* sample program using a for statement */
#include <stdio.h>

main() /* Program introduces the for statement, counts to ten */
{

int count;

for(count = 1; count <= 10; count = count + 1)
printf("%d ", count);

printf("\n");
}

The program declares an integer variable count. The first part of the for statement

for(count = 1;

initialises the value of count to 1. The for loop continues whilst the condition

count <= 10;

evaluates as TRUE. As the variable count has just been initialised to 1, this condition is TRUE and so
the program statement

printf("%d ", count);

is executed, which prints the value of count to the screen, followed by a space character.

Next, the remaining statement of the for is executed

28

count = count + 1);

which adds one to the current value of count. Control now passes back to the conditional test,

count <= 10;

which evaluates as true, so the program statement

printf("%d ", count);

is executed. Count is incremented again, the condition re-evaluated etc, until count reaches a value of
11.

When this occurs, the conditional test

count <= 10;

evaluates as FALSE, and the for loop terminates, and program control passes to the statement

printf("\n");

which prints a newline, and then the program terminates, as there are no more statements left to
execute.

/* sample program using a for statement */
#include <stdio.h>

main()
{

int n, t_number;

t_number = 0;
for(n = 1; n <= 200; n = n + 1)

t_number = t_number + n;

printf("The 200th triangular_number is %d\n", t_number);
}

The above program uses a for loop to calculate the sum of the numbers from 1 to 200 inclusive (said to
be the triangular number).

The following diagram shows the order of processing each part of a for

An example of using a for loop to print out characters

29

#include <stdio.h>

main()
{

char letter;
for(letter = 'A'; letter <= 'E'; letter = letter + 1) {

printf("%c ", letter);
}

}

Sample Program Output
A B C D E

An example of using a for loop to count numbers, using two initialisations

#include <stdio.h>

main()
{

int total, loop;
for(total = 0, loop = 1; loop <= 10; loop = loop + 1){

total = total + loop;
}
printf("Total = %d\n", total);

}

In the above example, the variable total is initialised to 0 as the first part of the for loop. The two
statements,

for(total = 0, loop = 1;

are part of the initialisation. This illustrates that more than one statement is allowed, as long as they are
separated by commas.

Graphical Animation of for loop
To demonstrate the operation of the for statement, lets consider a series of animations.

The code we will be using is

#include <stdio.h>

main() {
int x, y, z;

x = 2;
y = 2;
z = 3;

for(x = 1; x <= 6; x = x + 1) {
printf("%d", y);
y = y + 1;

30

}
printf("%d", z);

}

The following diagram shows the initial state of the program, after the initialisation of the variables x,
y, and z.

On entry to the for statement, the first expression is executed, which in our example assigns the value
1 to x. This can be seen in the graphic shown below (Note: see the Variable Values: section)

The next part of the for is executed, which tests the value of the loop variable x against the constant 6.

31

It can be seen from the variable window that x has a current value of 1, so the test is successful, and
program flow branches to execute the statements of the for body, which prints out the value of y, then
adds 1 to y. You can see the program output and the state of the variables shown in the graphic below.

After executing the statements of the for body, execution returns to the last part of the for statement.
Here, the value of x is incremented by 1. This is seen by the value of x changing to 2.

32

Next, the condition of the for variable is tested again. It continues because the value of it (2) is less
than 6, so the body of the loop is executed again.

Execution continues till the value of x reaches 7. Lets now jump ahead in the animation to see this.
Here, the condition test will fail, and the for statement finishes, passing control to the statement which
follows.

EXERCISE C6:
Rewrite the previous program by calculating the 200th triangular number, and make the program
shorter (if possible).

@ #include <stdio.h>

main()
{

int n = 1, t_number = 0;

for(; n <= 200; n++)

33

t_number = t_number + n;

printf("The 200th triangular_number is %d\n", t_number);
}

CLASS EXERCISE C7
What is the difference between the two statements,

a == 2
a = 2

@ a == 2 equality test
a = 2 assignment

CLASS EXERCISE C8
Change the printf line of the above program to the following,

printf(" %2d %2d\n",n,t_number);

What does the inclusion of the 2 in the %d statements achieve?

@ The inclusion of the 2 in the %d statements achieves a field width of two places, and prints a
leading 0 where the value is less than 10.

EXERCISE C9
Create a C program which calculates the triangular number of the users request, read from the
keyboard using scanf(). A triangular number is the sum of the preceding numbers, so the triangular
number 7 has a value of

7 + 6 + 5 + 4 + 3 + 2 + 1

@ #include <stdio.h>

main()
{

int n = 1, t_number = 0, input;

printf("Enter a number\n");
scanf("%d", &input);
for(; n <= input; n++)

t_number = t_number + n;

printf("The triangular_number of %d is %d\n", input, t_number);
}

34

Practise Exercise 4: for loops

1. Write a for loop to print out the values 1 to 10 on separate lines.

for(loop = 1; loop <= 10; loop = loop + 1)
printf("%d\n", loop) ;

2. Write a for loop which will produce the following output (hint: use two nested for loops)

1
22
333
4444
55555

for(loop = 1; loop <= 5; loop = loop + 1)
{

for(count = 1; count <= loop; count = count + 1)
printf("%d", count);

printf("\n");
}

3. Write a for loop which sums all values between 10 and 100 into a variable called total. Assume that
total has NOT been initialised to zero.

for(loop = 10, total = 0; loop <= 100; loop = loop + 1)
total = total + loop;

4. Write a for loop to print out the character set from A-Z.

for(ch = 'A'; ch <= 'Z'; ch = ch + 1)
printf("%c", ch);

printf("\n");

THE WHILE STATEMENT
The while provides a mechanism for repeating C statements whilst a condition is true. Its format is,

 while(condition)
 program statement;

35

Somewhere within the body of the while loop a statement must alter the value of the condition to allow
the loop to finish.

 /* Sample program including while */
#include <stdio.h>

 main()
 {
 int loop = 0;

 while(loop <= 10) {
 printf("%d\n", loop);
 ++loop;
 }
 }

The above program uses a while loop to repeat the statements

 printf("%d\n", loop);
 ++loop;

whilst the value of the variable loop is less than or equal to 10.

Note how the variable upon which the while is dependant is initialised prior to the while statement (in
this case the previous line), and also that the value of the variable is altered within the loop, so that
eventually the conditional test will succeed and the while loop will terminate.

This program is functionally equivalent to the earlier for program which counted to ten.

THE DO WHILE STATEMENT
The do { } while statement allows a loop to continue whilst a condition evaluates as TRUE (non-zero).
The loop is executed as least once.

 /* Demonstration of DO...WHILE */
 #include <stdio.h>

 main()
 {
 int value, r_digit;

 printf("Enter the number to be reversed.\n");
 scanf("%d", &value);
 do {
 r_digit = value % 10;
 printf("%d", r_digit);
 value = value / 10;
 } while(value != 0);
 printf("\n");

36

http://www.dsi.unive.it/~franz/c_program/c_019.htm#forten

 }

The above program reverses a number that is entered by the user. It does this by using the modulus %
operator to extract the right most digit into the variable r_digit. The original number is then divided by
10, and the operation repeated whilst the number is not equal to 0.

It is our contention that this programming construct is improper and should be avoided. It has potential
problems, and you should be aware of these.

One such problem is deemed to be lack of control. Considering the above program code portion,

 do {
 r_digit = value % 10;
 printf("%d", r_digit);
 value = value / 10;
 } while(value != 0);

there is NO choice whether to execute the loop. Entry to the loop is automatic, as you only get a
choice to continue.

Another problem is that the loop is always executed at least once. This is a by-product of the lack of
control. This means its possible to enter a do { } while loop with invalid data.

Beginner programmers can easily get into a whole heap of trouble, so our advice is to avoid its use.
This is the only time that you will encounter it in this course. Its easy to avoid the use of this construct
by replacing it with the following algorithms,

initialise loop control variable
while(loop control variable is valid) {

process data
adjust control variable if necessary

}

Okay, lets now rewrite the above example to remove the do { } while construct.
 /* rewritten code to remove construct */

#include <stdio.h>

main()
 {
 int value, r_digit;

value = 0;
while(value <= 0) {

 printf("Enter the number to be reversed.\n");
 scanf("%d", &value);

if(number <= 0)
printf("The number must be positive\n");

}

while(value != 0)
 {
 r_digit = value % 10;
 printf("%d", r_digit);

37

 value = value / 10;
 }
 printf("\n");
 }

MAKING DECISIONS

SELECTION (IF STATEMENTS)
The if statements allows branching (decision making) depending upon the value or state of variables.
This allows statements to be executed or skipped, depending upon decisions. The basic format is,

 if(expression)
 program statement;

Example;

 if(students < 65)
 ++student_count;

In the above example, the variable student_count is incremented by one only if the value of the integer
variable students is less than 65.

The following program uses an if statement to validate the users input to be in the range 1-10.

#include <stdio.h>

main()
{

int number;
int valid = 0;

while(valid == 0) {
printf("Enter a number between 1 and 10 -->");
scanf("%d", &number);
/* assume number is valid */
valid = 1;
if(number < 1) {

printf("Number is below 1. Please re-enter\n");
valid = 0;

}
if(number > 10) {

printf("Number is above 10. Please re-enter\n");
valid = 0;

}
}
printf("The number is %d\n", number);

}

38

EXERCISE C10:
Write a C program that allows the user to enter in 5 grades, ie, marks between 0 - 100. The program
must calculate the average mark, and state the number of marks less than 65.

@ #include <stdio.h>

 main()
 {
 int grade; /* to hold the entered grade */
 float average; /* the average mark */
 int loop; /* loop count */
 int sum; /* running total of all entered grades */
 int valid_entry; /* for validation of entered grade */
 int failures; /* number of people with less than 65 */

 sum = 0; /* initialise running total to 0 */
 failures = 0;

 for(loop = 0; loop < 5; loop = loop + 1)
 {
 valid_entry = 0;
 while(valid_entry == 0)
 {
 printf("Enter mark (1-100):");
 scanf(" %d", &grade);
 if ((grade > 1) || (grade < 100))
 {
 valid_entry = 1;
 }
 }
 if(grade < 65)
 failures++;
 sum = sum + grade;
 }
 average = (float) sum / loop;
 printf("The average mark was %.2f\n", average);
 printf("The number less than 65 was %d\n", failures);
 }

Consider the following program which determines whether a character entered from the keyboard is
within the range A to Z.

#include <stdio.h>

main()
{

char letter;

printf("Enter a character -->");
scanf(" %c", &letter);

if(letter >= 'A') {
if(letter <= 'Z')

printf("The character is within A to Z\n");

39

}
}

The program does not print any output if the character entered is not within the range A to Z. This can
be addressed on the following pages with the if else construct.

Please note use of the leading space in the statement (before %c)

 scanf(" %c", &letter);

This enables the skipping of leading TABS, Spaces, (collectively called whitespaces) and the ENTER
KEY. If the leading space was not used, then the first entered character would be used, and scanf
would not ignore the whitespace characters.

COMPARING float types FOR EQUALITY
Because of the way in which float types are stored, it makes it very difficult to compare float types for
equality. Avoid trying to compare float variables for equality, or you may encounter unpredictable
results.

if else
The general format for these are,

 if(condition 1)
 statement1;
 else if(condition 2)
 statement2;
 else if(condition 3)
 statement3;
 else
 statement4;

The else clause allows action to be taken where the condition evaluates as false (zero).

The following program uses an if else statement to validate the users input to be in the range 1-10.

#include <stdio.h>

main()
{

int number;
int valid = 0;

while(valid == 0) {
printf("Enter a number between 1 and 10 -->");
scanf("%d", &number);
if(number < 1) {

printf("Number is below 1. Please re-enter\n");
valid = 0;

40

}
else if(number > 10) {

printf("Number is above 10. Please re-enter\n");
valid = 0;

}
else

valid = 1;
}
printf("The number is %d\n", number);

}

This program is slightly different from the previous example in that an else clause is used to set the
variable valid to 1. In this program, the logic should be easier to follow.

/* Illustates nested if else and multiple arguments to the scanf function.
*/

#include <stdio.h>

main()
{

int invalid_operator = 0;
char operator;
float number1, number2, result;

printf("Enter two numbers and an operator in the format\n");
printf(" number1 operator number2\n");
scanf("%f %c %f", &number1, &operator, &number2);

if(operator == '*')
result = number1 * number2;

else if(operator == '/')
result = number1 / number2;

else if(operator == '+')
result = number1 + number2;

else if(operator == '-')
result = number1 - number2;

else
invalid_operator = 1;

if(invalid_operator != 1)
printf("%f %c %f is %f\n", number1, operator, number2,

result);
else

printf("Invalid operator.\n");
}

The above program acts as a simple calculator.

41

http://www.dsi.unive.it/~franz/c_program/c_024.htm#validate

Practise Exercise 5: while loops and if else

1. Use a while loop to print the integer values 1 to 10 on the screen

12345678910

#include <stdio.h>

main()
{

int loop;
loop = 1;
while(loop <= 10) {

printf("%d", loop);
loop++;

}
printf("\n");

}

2. Use a nested while loop to reproduce the following output

1
22
333
4444
55555

#include <stdio.h>

main()
{

int loop;
int count;
loop = 1;
while(loop <= 5) {

count = 1;
while(count <= loop) {

printf("%d", count);
count++;

}
loop++;

}
printf("\n");

}

3. Use an if statement to compare the value of an integer called sum against the value 65, and if it is
less, print the text string "Sorry, try again".

if(sum < 65)

42

printf("Sorry, try again.\n");

4. If total is equal to the variable good_guess, print the value of total, else print the value of
good_guess.

if(total == good_guess)
printf("%d\n", total);

else
printf("%d\n", good_guess);

COMPOUND RELATIONALS (AND, NOT, OR, EOR)

Combining more than one condition
These allow the testing of more than one condition as part of selection statements. The symbols are

LOGICAL AND &&

Logical and requires all conditions to evaluate as TRUE (non-zero).

LOGICAL OR ||

Logical or will be executed if any ONE of the conditions is TRUE (non-zero).

LOGICAL NOT !

logical not negates (changes from TRUE to FALSE, vsvs) a condition.

LOGICAL EOR ^

Logical eor will be excuted if either condition is TRUE, but NOT if they are all true.

The following program uses an if statement with logical AND to validate the users input to be in the
range 1-10.

#include <stdio.h>

main()
{

int number;
int valid = 0;

while(valid == 0) {
printf("Enter a number between 1 and 10 -->");
scanf("%d", &number);
if((number < 1) || (number > 10)){

printf("Number is outside range 1-10. Please re-
enter\n");

valid = 0;
}
else

valid = 1;
}

43

printf("The number is %d\n", number);
}

This program is slightly different from the previous example in that a LOGICAL AND eliminates one
of the else clauses.

COMPOUND RELATIONALS (AND, NOT, OR, EOR)

NEGATION

#include <stdio.h>

main()
{

int flag = 0;
if(! flag) {

printf("The flag is not set.\n");
flag = ! flag;

}
printf("The value of flag is %d\n", flag);

}

The program tests to see if flag is not (!) set; equal to zero. It then prints the appropriate message,
changes the state of flag; flag becomes equal to not flag; equal to 1. Finally the value of flag is printed.

COMPOUND RELATIONALS (AND, NOT, OR, EOR)

Range checking using Compound Relationals
Consider where a value is to be inputted from the user, and checked for validity to be within a certain
range, lets say between the integer values 1 and 100.

#include <stdio.h>

main()
{

int number;
int valid = 0;

while(valid == 0) {
printf("Enter a number between 1 and 100");
scanf("%d", &number);
if((number < 1) || (number > 100))

printf("Number is outside legal range\n");
else

valid = 1;
}
printf("Number is %d\n", number);

}

44

The program uses valid, as a flag to indicate whether the inputted data is within the required range of
allowable values. The while loop continues whilst valid is 0.

The statement

if((number < 1) || (number > 100))

checks to see if the number entered by the user is within the valid range, and if so, will set the value of
valid to 1, allowing the while loop to exit.

Now consider writing a program which validates a character to be within the range A-Z, in other
words alphabetic.

#include <stdio.h>

main()
{

char ch;
int valid = 0;

while(valid == 0) {
printf("Enter a character A-Z");
scanf(" %c", &ch);
if((ch >= 'A') || (ch <= 'Z'))

valid = 1;
else

printf("Character is outside legal range\n");
}
printf("Character is %c\n", ch);

}

switch() case:
The switch case statement is a better way of writing a program when a series of if elses occurs. The
general format for this is,

switch (expression) {
case value1:

program statement;
program statement;
......
break;

case valuen:
program statement;
.......
break;

45

default:
.......
.......
break;

}

The keyword break must be included at the end of each case statement. The default clause is optional,
and is executed if the cases are not met. The right brace at the end signifies the end of the case
selections.

Rules for switch statements
values for 'case' must be integer or character constants
the order of the 'case' statements is unimportant
the default clause may occur first (convention places it last)
you cannot use expressions or ranges

#include <stdio.h>

main()
{

int menu, numb1, numb2, total;

printf("enter in two numbers -->");
scanf("%d %d", &numb1, &numb2);
printf("enter in choice\n");
printf("1=addition\n");
printf("2=subtraction\n");
scanf("%d", &menu);
switch(menu) {

case 1: total = numb1 + numb2; break;
case 2: total = numb1 - numb2; break;
default: printf("Invalid option selected\n");

}
if(menu == 1)

printf("%d plus %d is %d\n", numb1, numb2, total);
else if(menu == 2)

printf("%d minus %d is %d\n", numb1, numb2, total);
}

The above program uses a switch statement to validate and select upon the users input choice,
simulating a simple menu of choices.

EXERCISE C11:
Rewrite the previous program, which accepted two numbers and an operator, using the switch case
statement.

@ Rewrite the previous program, which accepted two numbers and an operator, using the switch
case statement.

46

/* Illustates nested if else and multiple arguments to the scanf function.
*/

#include <stdio.h>

main()
{

int invalid_operator = 0;
char operator;
float number1, number2, result;

printf("Enter two numbers and an operator in the format\n");
printf(" number1 operator number2\n");
scanf("%f %c %f", &number1, &operator, &number2);

if(operator == '*')
result = number1 * number2;

else if(operator == '/')
result = number1 / number2;

else if(operator == '+')
result = number1 + number2;

else if(operator == '-')
result = number1 - number2;

else
invalid_operator = 1;

if(invalid_operator != 1)
printf("%f %c %f is %f\n", number1, operator, number2,

result);
else

printf("Invalid operator.\n");
}

Solution

/* Illustates switch */
#include <stdio.h>

main()
{

int invalid_operator = 0;
char operator;
float number1, number2, result;

printf("Enter two numbers and an operator in the format\n");
printf(" number1 operator number2\n");
scanf("%f %c %f", &number1, &operator, &number2);

switch(operator) {
case '*' : result = number1 * number2; break;
case '/' : result = number1 / number2; break;
case '+' : result = number1 + number2; break;
case '-' : result = number1 - number2; break;
default : invalid_operator = 1;

}
switch(invalid_operator) {

case 1 : printf("Invalid operator.\n"); break;

47

default : printf("%f %c %f is %f\n", number1, operator,
number2, result);

}
}

Practise Exercise 6

Compound Relationals and switch

1. if sum is equal to 10 and total is less than 20, print the text string "incorrect.".

if((sum == 10) && (total < 20))
printf("incorrect.\n");

2. if flag is 1 or letter is not an 'X', then assign the value 0 to exit_flag, else set exit_flag to 1.

if((flag == 1) || (letter != 'X'))
exit_flag = 0;

else
exit_flag = 1;

3. rewrite the following statements using a switch statement

if(letter == 'X')
sum = 0;

else if (letter == 'Z')
valid_flag = 1;

else if(letter == 'A')
sum = 1;

else
printf("Unknown letter -->%c\n", letter);

switch(letter) {
case 'X' : sum = 0; break;
case 'Z' : valid_flag = 1; break;
case 'A' : sum = 1; break;
default : printf("Unknown letter -->%c\n", letter);

}

48

ACCEPTING SINGLE CHARACTERS FROM THE KEYBOARD

getchar
The following program illustrates this,

#include <stdio.h>

main()
{

int i;
int ch;

for(i = 1; i<= 5; ++i) {
ch = getchar();
putchar(ch);

}
}

The program reads five characters (one for each iteration of the for loop) from the keyboard. Note that
getchar() gets a single character from the keyboard, and putchar() writes a single character (in this
case, ch) to the console screen.

The file ctype.h provides routines for manipulating characters.

BUILT IN FUNCTIONS FOR STRING HANDLING

string.h
You may want to look at the section on arrays first!. The following macros are built into the file
string.h

strcat Appends a string
strchr Finds first occurrence of a given character
strcmp Compares two strings
strcmpi Compares two strings, non-case sensitive
strcpy Copies one string to another
strlen Finds length of a string
strlwr Converts a string to lowercase
strncat Appends n characters of string
strncmp Compares n characters of two strings
strncpy Copies n characters of one string to another
strnset Sets n characters of string to a given character
strrchr Finds last occurrence of given character in string
strrev Reverses string
strset Sets all characters of string to a given character
strspn Finds first substring from given character set in string
strupr Converts string to uppercase

To convert a string to uppercase

#include <stdio.h>

49

#include <string.h>

main()
{

char name[80]; /* declare an array of characters 0-79 */

printf("Enter in a name in lowercase\n");
scanf("%s", name);
strupr(name);
printf("The name is uppercase is %s", name);

}

BUILT IN FUNCTIONS FOR CHARACTER HANDLING
The following character handling functions are defined in ctype.h

isalnum Tests for alphanumeric character
isalpha Tests for alphabetic character
isascii Tests for ASCII character
iscntrl Tests for control character
isdigit Tests for 0 to 9
isgraph Tests for printable character
islower Tests for lowercase
isprint Tests for printable character
ispunct Tests for punctuation character
isspace Tests for space character
isupper Tests for uppercase character
isxdigit Tests for hexadecimal
toascii Converts character to ascii code
tolower Converts character to lowercase
toupper Converts character to uppercase

To convert a string array to uppercase a character at a time using toupper()

#include <stdio.h>
#include <ctype.h>
main()
{

char name[80];
int loop;

printf("Enter in a name in lowercase\n");
scanf("%s", name);
for(loop = 0; name[loop] != 0; loop++)

name[loop] = toupper(name[loop]);

printf("The name is uppercase is %s", name);
}

Validation Of User Input In C

Basic Rules

50

 Don't pass invalid data onwards.
 Validate data at input time.
 Always give the user meaningful feedback
 Tell the user what you expect to read as input

/* example one, a simple continue statement */
#include <stdio.h>
#include <ctype.h>

main()
{

int valid_input; /* when 1, data is valid and loop is exited */
char user_input; /* handles user input, single character menu

choice */

valid_input = 0;
while(valid_input == 0) {

printf("Continue (Y/N)?\n");
scanf(" %c", &user_input);
user_input = toupper(user_input);
if((user_input == 'Y') || (user_input == 'N')) valid_input = 1;
else printf("\007Error: Invalid choice\n");

}
}

/* example two, getting and validating choices */
#include <stdio.h>
#include <ctype.h>

main()
{

int exit_flag = 0, valid_choice;
char menu_choice;

while(exit_flag == 0) {
valid_choice = 0;
while(valid_choice == 0) {

printf("\nC = Copy File\nE = Exit\nM = Move File\n");
printf("Enter choice:\n");
scanf(" %c", &menu_choice);
if((menu_choice=='C') || (menu_choice=='E') ||

(menu_choice=='M'))
valid_choice = 1;

else
printf("\007Error. Invalid menu choice

selected.\n");
}
switch(menu_choice) {

case 'C' :(); break;
case 'E' : exit_flag = 1; break;

51

case 'M' :(); break;
default : printf("Error--- Should not occur.\n"); break;

}
}

}

Other validation examples :

Handling User Input In C
scanf() has problems, in that if a user is expected to type an integer, and types a string instead, often
the program bombs. This can be overcome by reading all input as a string (use getchar()), and then
converting the string to the correct data type.

/* example one, to read a word at a time */
#include <stdio.h>
#include <ctype.h>
#define MAXBUFFERSIZE 80

void cleartoendofline(void); /* ANSI function prototype */

void cleartoendofline(void)
{

char ch;
ch = getchar();
while(ch != '\n')

ch = getchar();
}

main()
{

char ch; /* handles user input */
char buffer[MAXBUFFERSIZE]; /* sufficient to handle one line */
int char_count; /* number of characters read for this line

*/
int exit_flag = 0;
int valid_choice;

while(exit_flag == 0) {
printf("Enter a line of text (<80 chars)\n");
ch = getchar();
char_count = 0;
while((ch != '\n') && (char_count < MAXBUFFERSIZE)) {

buffer[char_count++] = ch;
ch = getchar();

}
buffer[char_count] = 0x00; /* null terminate buffer */
printf("\nThe line you entered was:\n");
printf("%s\n", buffer);

valid_choice = 0;
while(valid_choice == 0) {

printf("Continue (Y/N)?\n");
scanf(" %c", &ch);

52

ch = toupper(ch);
if((ch == 'Y') || (ch == 'N'))

valid_choice = 1;
else

printf("\007Error: Invalid choice\n");
cleartoendofline();

}
if(ch == 'N') exit_flag = 1;

}
}

Another Example, read a number as a string

/* example two, reading a number as a string */
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#define MAXBUFFERSIZE 80

void cleartoendofline(void); /* ANSI function prototype */

void cleartoendofline(void)
{

char ch;
ch = getchar();
while(ch != '\n')

ch = getchar();
}

main()
{

char ch; /* handles user input */
char buffer[MAXBUFFERSIZE]; /* sufficient to handle one line */
int char_count; /* number of characters read for this line

*/
int exit_flag = 0, number, valid_choice;

while(exit_flag == 0) {
valid_choice = 0;
while(valid_choice == 0) {

printf("Enter a number between 1 and 1000\n");
ch = getchar();
char_count = 0;
while((ch != '\n') && (char_count < MAXBUFFERSIZE)) {

buffer[char_count++] = ch;
ch = getchar();

}
buffer[char_count] = 0x00; /* null terminate buffer */
number = atoi(buffer);
if((number < 1) || (number > 1000))

printf("\007Error. Number outside range 1-1000\n");
else

valid_choice = 1;
}
printf("\nThe number you entered was:\n");
printf("%d\n", number);

53

valid_choice = 0;
while(valid_choice == 0) {

printf("Continue (Y/N)?\n");
scanf(" %c", &ch);
ch = toupper(ch);
if((ch == 'Y') || (ch == 'N'))

valid_choice = 1;
else

printf("\007Error: Invalid choice\n");
cleartoendofline();

}
if(ch == 'N') exit_flag = 1;

}
}

THE CONDITIONAL EXPRESSION OPERATOR
This conditional expression operator takes THREE operators. The two symbols used to denote this
operator are the ? and the :. The first operand is placed before the ?, the second operand between the ?
and the :, and the third after the :. The general format is,

condition ? expression1 : expression2

If the result of condition is TRUE (non-zero), expression1 is evaluated and the result of the
evaluation becomes the result of the operation. If the condition is FALSE (zero), then expression2 is
evaluated and its result becomes the result of the operation. An example will help,

s = (x < 0) ? -1 : x * x;

If x is less than zero then s = -1
If x is greater than zero then s = x * x

Example program illustrating conditional expression operator

#include <stdio.h>

main()
{

int input;

printf("I will tell you if the number is positive, negative or
zero!"\n");

printf("please enter your number now--->");
scanf("%d", &input);

54

(input < 0) ? printf("negative\n") : ((input > 0) ?
printf("positive\n") : printf("zero\n"));

}

EXERCISE C12:
Evaluate the following expression, where a=4, b=5

least_value = (a < b) ? a : b;

@ Evaluate the following expression, where a=4, b=5

least_value = (a < b) ? a : b;

max_value = 5

ARRAYS

Little Boxes on the hillside
Arrays are a data structure which hold multiple variables of the same data type. Consider the case
where a programmer needs to keep track of a number of people within an organisation. So far, our
initial attempt will be to create a specific variable for each user. This might look like,

int name1 = 101;
int name2 = 232;
int name3 = 231;

It becomes increasingly more difficult to keep track of this as the number of variables increase. Arrays
offer a solution to this problem.

An array is a multi-element box, a bit like a filing cabinet, and uses an indexing system to find each
variable stored within it. In C, indexing starts at zero.

Arrays, like other variables in C, must be declared before they can be used.

The replacement of the above example using arrays looks like,

int names[4];
names[0] = 101;
names[1] = 232;
names[2] = 231;
names[3] = 0;

55

We created an array called names, which has space for four integer variables. You may also see that we
stored 0 in the last space of the array. This is a common technique used by C programmers to signify
the end of an array.

Arrays have the following syntax, using square brackets to access each indexed value (called an
element).

x[i]

so that x[5] refers to the sixth element in an array called x. In C, array elements start with 0. Assigning
values to array elements is done by,

x[10] = g;

and assigning array elements to a variable is done by,

g = x[10];

In the following example, a character based array named word is declared, and each element is
assigned a character. The last element is filled with a zero value, to signify the end of the character
string (in C, there is no string type, so character based arrays are used to hold strings). A printf
statement is then used to print out all elements of the array.

/* Introducing array's, 2 */
#include <stdio.h>

main()
{

char word[20];

word[0] = 'H';
word[1] = 'e';
word[2] = 'l';
word[3] = 'l';
word[4] = 'o';
word[5] = 0;
printf("The contents of word[] is -->%s\n", word);

}

DECLARING ARRAYS
Arrays may consist of any of the valid data types. Arrays are declared along with all other variables in
the declaration section of the program.

/* Introducing array's */
#include <stdio.h>

56

main()
{

int numbers[100];
float averages[20];

numbers[2] = 10;
--numbers[2];
printf("The 3rd element of array numbers is %d\n", numbers[2]);

}

The above program declares two arrays, assigns 10 to the value of the 3rd element of array numbers,
decrements this value (--numbers[2]), and finally prints the value. The number of elements that each
array is to have is included inside the square brackets.

ASSIGNING INITIAL VALUES TO ARRAYS
The declaration is preceded by the word static. The initial values are enclosed in braces, eg,

#include <stdio.h>
main()
{

int x;
static int values[] = { 1,2,3,4,5,6,7,8,9 };
static char word[] = { 'H','e','l','l','o' };
for(x = 0; x < 9; ++x)

printf("Values [%d] is %d\n", x, values[x]);
}

The previous program declares two arrays, values and word. Note that inside the squarebrackets there
is no variable to indicate how big the array is to be. In this case, C initializes the array to the number of
elements that appear within the initialize braces. So values consist of 9 elements (numbered 0 to 8) and
the char array word has 5 elements.

The following program shows how to initialise all the elements of an integer based array to the
value 10, using a for loop to cycle through each element in turn.

#include <stdio.h>
main()
{

int count;
int values[100];
for(count = 0; count < 100; count++)

values[count] = 10;
}

57

MULTI DIMENSIONED ARRAYS
Multi-dimensioned arrays have two or more index values which specify the element in the array.

multi[i][j]

In the above example, the first index value i specifies a row index, whilst j specifies a column index.

<H5Declaration and calculations

int m1[10][10];
static int m2[2][2] = { {0,1}, {2,3} };

sum = m1[i][j] + m2[k][l];

NOTE the strange way that the initial values have been assigned to the two-dimensional array m2.
Inside the braces are,

{ 0, 1 },
{ 2, 3 }

Remember that arrays are split up into row and columns. The first is the row, the second is the column.
Looking at the initial values assigned to m2, they are,

m2[0][0] = 0
m2[0][1] = 1
m2[1][0] = 2
m2[1][1] = 3

EXERCISE C13:
Given a two dimensional array, write a program that totals all elements, printing the total.

@ Given a two dimensional array write a program that totals all elements printing the total.

#include <stdio.h>

main()
{

static int m[][] = { {10,5,-3}, {9, 0, 0}, {32,20,1}, {0,0,8} };
int row, column, sum;

sum = 0;
for(row = 0; row < 4; row++)

58

for(column = 0; column < 3; column++)
sum = sum + m[row][column];

printf("The total is %d\n", sum);
}

EXERCISE C14:
What value is assigned to the elements which are not assigned initialised.

@ They get initialised to ZERO

CHARACTER ARRAYS [STRINGS]
Consider the following program,

#include <stdio.h>
main()
{

static char name1[] = {'H','e','l','l','o'};
static char name2[] = "Hello";
printf("%s\n", name1);
printf("%s\n", name2);

}

The difference between the two arrays is that name2 has a null placed at the end of the string, ie, in
name2[5], whilst name1 has not. To insert a null at the end of the name1 array, the initialization can be
changed to,

static char name1[] = {'H','e','l','l','o','\0'};

Consider the following program, which initialises the contents of the character based array word
during the program, using the function strcpy, which necessitates using the include file string.h

#include <stdio.h>
#include <string.h>

main()
{

char word[20];

strcpy(word, "hi there.");
printf("%s\n", word);

}

59

SOME VARIATIONS IN DECLARING ARRAYS

int numbers[10];

static int numbers[10] = { 34, 27, 16 };

static int numbers[] = { 2, -3, 45, 79, -14, 5, 9, 28, -1, 0 };

static char text[] = "Welcome to New Zealand.";

static float radix[12] = { 134.362, 1913.248 };

double radians[1000];

READING CHARACTER STRINGS FROM THE KEYBOARD
Character based arrays are often referred to in C as strings. C does not support a string type, so scanf()
is used to handle character based arrays. This assumes that a 0 or NULL value is stored in the last
element of the array. Consider the following, which reads a string of characters (excluding spaces)
from the keyboard.

char string[18];
scanf("%s", string);

NOTE that the & character does not need to precede the variable name when the formatter %s is used!
If the users response was

Hello

then

string[0] = 'H'
string[1] = 'e'
....
string[4] = 'o'
string[5] = '\0'

Practise Exercise 7: Arrays

1. Declare a character based array called letters of ten elements

60

char letters[10];

2. Assign the character value 'Z' to the fourth element of the letters array

letters[3] = 'Z';

3. Use a for loop to total the contents of an integer array called numbers which has five elements. Store
the result in an integer called total.

for(loop = 0, total = 0; loop < 5; loop++)
total = total + numbers[loop];

4. Declare a multidimensioned array of floats called balances having three rows and five columns.

float balances[3][5];

5. Write a for loop to total the contents of the multidimensioned float array balances.

for(row = 0, total = 0; row < 3; row++)
for(column = 0; column < 5; column++)

total = total + balances[row][column];

6. Assign the text string "Hello" to the character based array words at declaration time.

static char words[] = "Hello";

7. Assign the text string "Welcome" to the character based array stuff (not at declaration time)

char stuff[50];

strcpy(stuff, "Welcome");

8. Use a printf statement to print out the third element of an integer array called totals

printf("%d\n", totals[2]);

61

9. Use a printf statement to print out the contents of the character array called words

printf("%s\n", words);

10. Use a scanf statement to read a string of characters into the array words.

scanf("%s", words);

11. Write a for loop which will read five characters (use scanf) and deposit them into the character
based array words, beginning at element 0.

for(loop = 0; loop < 5; loop++)
scanf("%c", &words[loop]);

FUNCTIONS
A function in C can perform a particular task, and supports the concept of modular programming
design techniques.

We have already been exposed to functions. The main body of a C program, identified by the keyword
main, and enclosed by the left and right braces is a function. It is called by the operating system when
the program is loaded, and when terminated, returns to the operating system.

Functions have a basic structure. Their format is

return_data_type function_name (arguments, arguments)
data_type_declarations_of_arguments;
{

function_body
}

It is worth noting that a return_data_type is assumed to be type int unless otherwise specified, thus the
programs we have seen so far imply that main() returns an integer to the operating system.

ANSI C varies slightly in the way that functions are declared. Its format is

return_data_type function_name (data_type variable_name, data_type
variable_name, ..)

{
function_body

}

62

This permits type checking by utilizing function prototypes to inform the compiler of the type and
number of parameters a function accepts. When calling a function, this information is used to perform
type and parameter checking.

ANSI C also requires that the return_data_type for a function which does not return data must be type
void. The default return_data_type is assumed to be integer unless otherwise specified, but must match
that which the function declaration specifies.

A simple function is,

void print_message(void)
{

printf("This is a module called print_message.\n");
}

Note the function name is print_message. No arguments are accepted by the function, this is indicated
by the keyword void in the accepted parameter section of the function declaration. The
return_data_type is void, thus data is not returned by the function.

An ANSI C function prototype for print_message() is,

void print_message(void);

Function prototypes are listed at the beginning of the source file. Often, they might be placed in a
users .h (header) file.

FUNCTIONS
Now lets incorporate this function into a program.

/* Program illustrating a simple function call */
#include <stdio.h>

void print_message(void); /* ANSI C function prototype */

void print_message(void) /* the function code */
{

printf("This is a module called print_message.\n");
}

main()
{

print_message();
}

63

To call a function, it is only necessary to write its name. The code associated with the function name is
executed at that point in the program. When the function terminates, execution begins with the
statement which follows the function name.

In the above program, execution begins at main(). The only statement inside the main body of the
program is a call to the code of function print_message(). This code is executed, and when finished
returns back to main().

As there is no further statements inside the main body, the program terminates by returning to the
operating system.

FUNCTIONS
In the following example, the function accepts a single data variable, but does not return any
information.

/* Program to calculate a specific factorial number */
#include <stdio.h>

void calc_factorial(int); /* ANSI function prototype */

void calc_factorial(int n)
{

int i, factorial_number = 0;

for(i = 1; i <= n; ++i)
factorial_number *= i;

printf("The factorial of %d is %d\n", n, factorial_number);
}

main()
{

int number = 0;

printf("Enter a number\n");
scanf("%d", &number);
calc_factorial(number);

}

Lets look at the function calc_factorial(). The declaration of the function

void calc_factorial(int n)

indicates there is no return data type and a single integer is accepted, known inside the body of the
function as n. Next comes the declaration of the local variables,

64

int i, factorial_number = 0;

It is more correct in C to use,

auto int i, factorial_number = 0;

as the keyword auto designates to the compiler that the variables are local. The program works by
accepting a variable from the keyboard which is then passed to the function. In other words, the
variable number inside the main body is then copied to the variable n in the function, which then
calculates the correct answer.

RETURNING FUNCTION RESULTS
This is done by the use of the keyword return, followed by a data variable or constant value, the data
type of which must match that of the declared return_data_type for the function.

float add_numbers(float n1, float n2)
{

return n1 + n2; /* legal */
return 6; /* illegal, not the same data type */
return 6.0; /* legal */

}

It is possible for a function to have multiple return statements.

int validate_input(char command)
{

switch(command) {
case '+' :
case '-' : return 1;
case '*' :
case '/' : return 2;
default : return 0;

}
}

Here is another example

/* Simple multiply program using argument passing */
#include <stdio.h>

int calc_result(int, int); /* ANSI function prototype */

int calc_result(int numb1, int numb2)
{

auto int result;

65

result = numb1 * numb2;
return result;

}

main()
{

int digit1 = 10, digit2 = 30, answer = 0;
answer = calc_result(digit1, digit2);
printf("%d multiplied by %d is %d\n", digit1, digit2, answer);

}

NOTE that the value which is returned from the function (ie result) must be declared in the function.

NOTE: The formal declaration of the function name is preceded by the data type which is returned,

int calc_result (numb1, numb2)

EXERCISE C15:
Write a program in C which incorporates a function using parameter passing and performs the addition
of three numbers. The main section of the program is to print the result.

@ Write a program in C which incorporates a function using parameter passing and performs the
addition of three numbers. The main section of the program is to print the result.

#include <stdio.h>
int calc_result(int, int, int);

int calc_result(int var1, int var2, int var3)
{
 int sum;

 sum = var1 + var2 + var3;
 return(sum); /* return(var1 + var2 + var3); */
}

main()
{
 int numb1 = 2, numb2 = 3, numb3=4, answer=0;

 answer = calc_result(numb1, numb2, numb3);
 printf("%d + %d + %d = %d\n", numb1, numb2, numb3, answer);
}

66

RETURNING FUNCTION RESULTS
This is done by the use of the keyword return, followed by a data variable or constant value, the data
type of which must match that of the declared return_data_type for the function.

float add_numbers(float n1, float n2)
{

return n1 + n2; /* legal */
return 6; /* illegal, not the same data type */
return 6.0; /* legal */

}

It is possible for a function to have multiple return statements.

int validate_input(char command)
{

switch(command) {
case '+' :
case '-' : return 1;
case '*' :
case '/' : return 2;
default : return 0;

}
}

Here is another example

/* Simple multiply program using argument passing */
#include <stdio.h>

int calc_result(int, int); /* ANSI function prototype */

int calc_result(int numb1, int numb2)
{

auto int result;
result = numb1 * numb2;
return result;

}

main()
{

int digit1 = 10, digit2 = 30, answer = 0;
answer = calc_result(digit1, digit2);
printf("%d multiplied by %d is %d\n", digit1, digit2, answer);

}

NOTE that the value which is returned from the function (ie result) must be declared in the function.

NOTE: The formal declaration of the function name is preceded by the data type which is returned,

67

int calc_result (numb1, numb2)

EXERCISE C15:
Write a program in C which incorporates a function using parameter passing and performs the addition
of three numbers. The main section of the program is to print the result.
@ #include <stdio.h>

int calc_result(int, int, int);

int calc_result(int var1, int var2, int var3)
{
 int sum;

 sum = var1 + var2 + var3;
 return(sum); /* return(var1 + var2 + var3); */
}

main()
{
 int numb1 = 2, numb2 = 3, numb3=4, answer=0;

 answer = calc_result(numb1, numb2, numb3);
 printf("%d + %d + %d = %d\n", numb1, numb2, numb3, answer);
}

LOCAL AND GLOBAL VARIABLES

Local
These variables only exist inside the specific function that creates them. They are unknown to other
functions and to the main program. As such, they are normally implemented using a stack. Local
variables cease to exist once the function that created them is completed. They are recreated each time
a function is executed or called.

Global
These variables can be accessed (ie known) by any function comprising the program. They are
implemented by associating memory locations with variable names. They do not get recreated if the
function is recalled.

DEFINING GLOBAL VARIABLES

/* Demonstrating Global variables */
#include <stdio.h>
int add_numbers(void); /* ANSI function prototype */

/* These are global variables and can be accessed by functions from this
point on */

int value1, value2, value3;

68

int add_numbers(void)
{

auto int result;
result = value1 + value2 + value3;
return result;

}

main()
{

auto int result;

result = add_numbers();
printf("The sum of %d + %d + %d is %d\n",

value1, value2, value3, final_result);
}

The scope of global variables can be restricted by carefully placing the declaration. They are visible
from the declaration until the end of the current source file.

#include <stdio.h>
void no_access(void); /* ANSI function prototype */
void all_access(void);

static int n2; /* n2 is known from this point onwards */

void no_access(void)
{

n1 = 10; /* illegal, n1 not yet known */
n2 = 5; /* valid */

}

static int n1; /* n1 is known from this point onwards */

void all_access(void)
{

n1 = 10; /* valid */
n2 = 3; /* valid */

}

AUTOMATIC AND STATIC VARIABLES
C programs have a number of segments (or areas) where data is located. These segments are typically,

_DATA Static data
_BSS Uninitialized static data, zeroed out before call to main()
_STACK Automatic data, resides on stack frame, thus local to functions
_CONST Constant data, using the ANSI C keyword const

The use of the appropriate keyword allows correct placement of the variable onto the desired data
segment.

69

/* example program illustrates difference between static and automatic
variables */

#include <stdio.h>
void demo(void); /* ANSI function prototypes */

void demo(void)
{

auto int avar = 0;
static int svar = 0;

printf("auto = %d, static = %d\n", avar, svar);
++avar;
++svar;

}

main()
{

int i;

while(i < 3) {
demo();
i++;

}
}

AUTOMATIC AND STATIC VARIABLES

/* example program illustrates difference between static and automatic
variables */

#include <stdio.h>
void demo(void); /* ANSI function prototypes */

void demo(void)
{

auto int avar = 0;
static int svar = 0;

printf("auto = %d, static = %d\n", avar, svar);
++avar;
++svar;

}

main()
{

int i;

while(i < 3) {
demo();
i++;

}
}

70

Program output

auto = 0, static = 0
auto = 0, static = 1
auto = 0, static = 2

Static variables are created and initialized once, on the first call to the function. Subsequent calls to the
function do not recreate or re-initialize the static variable. When the function terminates, the variable
still exists on the _DATA segment, but cannot be accessed by outside functions.

Automatic variables are the opposite. They are created and re-initialized on each entry to the function.
They disappear (are de-allocated) when the function terminates. They are created on the _STACK
segment.

PASSING ARRAYS TO FUNCTIONS
The following program demonstrates how to pass an array to a function.

/* example program to demonstrate the passing of an array */
#include <stdio.h>
int maximum(int []); /* ANSI function prototype */

int maximum(int values[5])
{

int max_value, i;

max_value = values[0];
for(i = 0; i < 5; ++i)

if(values[i] > max_value)
max_value = values[i];

return max_value;
}

main()
{

int values[5], i, max;

printf("Enter 5 numbers\n");
for(i = 0; i < 5; ++i)

scanf("%d", &values[i]);

max = maximum(values);
printf("\nMaximum value is %d\n", max);

}

Note: The program defines an array of five elements (values) and initializes each element to the users
inputted values. The array values is then passed to the function. The declaration

71

int maximum(int values[5])

defines the function name as maximum, and declares that an integer is passed back as the result, and
that it accepts a data type called values, which is declared as an array of five integers. The values array
in the main body is now known as the array values inside function maximum. IT IS NOT A COPY,
BUT THE ORIGINAL.

This means any changes will update the original array.

A local variable max_value is set to the first element of values, and a for loop is executed which
cycles through each element in values and assigns the lowest item to max_value. This number is then
passed back by the return statement, and assigned to max in the main section.

Functions and Arrays

C allows the user to build up a library of modules such as the maximum value found in the previous
example.

However, in its present form this module or function is limited as it only accepts ten elements. It is
thus desirable to modify the function so that it also accepts the number of elements as an argument
also. A modified version follows,

/* example program to demonstrate the passing of an array */
#include <stdio.h>

int findmaximum(int [], int); /* ANSI function prototype */

int findmaximum(int numbers[], int elements)
{

int largest_value, i;

largest_value = numbers[0];

for(i = 0; i < elements; ++i)
if(numbers[i] < largest_value)

largest_value = numbers[i];

return largest_value;
}

main()
{

static int numb1[] = { 5, 34, 56, -12, 3, 19 };
static int numb2[] = { 1, -2, 34, 207, 93, -12 };

printf("maximum of numb1[] is %d\n", findmaximum(numb1, 6));
printf("maximum is numb2[] is %d\n", findmaximum(numb2, 6));

72

}

PASSING OF ARRAYS TO FUNCTIONS
If an entire array is passed to a function, any changes made also occur to the original array.

PASSING OF MULTIDIMENSIONAL ARRAYS TO FUNCTIONS
If passing a multidimensional array, the number of columns must be specified in the formal parameter
declaration section of the function.

EXERCISE C16:
Write a C program incorporating a function to add all elements of a two dimensional
array. The number of rows are to be passed to the function, and it passes back the total
sum of all elements (Use at least a 4 x 4 array).

@ #include <stdio.h>

int add2darray(int [][5], int); /* function prototype */

int add2darray(int array[][5], int rows)
{

int total = 0, columns, row;

for(row = 0; row < rows; row++)
for(columns = 0; columns < 5; columns++)

total = total + array[row][columns];
return total;

}

main()
{

int numbers[][] = { {1, 2, 35, 7, 10}, {6, 7, 4, 1, 0} };
int sum;

sum = add2darray(numbers, 2);
printf("the sum of numbers is %d\n", sum);

}

FUNCTION PROTOTYPES
These have been introduced into the C language as a means of provided type checking and parameter
checking for function calls. Because C programs are generally split up over a number of different
source files which are independently compiled, then linked together to generate a run-time program, it
is possible for errors to occur.

Consider the following example.

73

/* source file add.c */
void add_up(int numbers[20])
{

....
}

/* source file mainline.c */
static float values[] = { 10.2, 32.1, 0.006, 31.08 };

main()
{

float result;
...
result = add_up(values);

}

As the two source files are compiled separately, the compiler generates correct code based upon what
the programmer has written. When compiling mainline.c, the compiler assumes that the function
add_up accepts an array of float variables and returns a float. When the two portions are combined and
ran as a unit, the program will definitely not work as intended.

To provide a means of combating these conflicts, ANSI C has function prototyping. Just as data types
need to be declared, functions are declared also. The function prototype for the above is,

/* source file mainline.c */
void add_up(int numbers[20]);

NOTE that the function prototype ends with a semi-colon; in this way we can tell its a declaration of a
function type, not the function code. If mainline.c was re-compiled, errors would be generated by the
call in the main section which references add_up().

Generally, when developing a large program, a separate file would be used to contain all the function
prototypes. This file can then be included by the compiler to enforce type and parameter checking.

ADDITIONAL ASSIGNMENT OPERATOR
Consider the following statement,

numbers[loop] += 7;

This assignment += is equivalent to multiply equals. It takes the value of numbers[loop], adds it by 7,
then assigns the value to numbers[loop]. In other words it is the same as,

numbers[loop] = numbers[loop] + 7;

74

EXERCISE C17:
What is the outcome of the following, assuming time=2, a=3, b=4, c=5

time -= 5;
a *= b + c;

@
time -= 5;
a *= b + c;

time = -3
a = 27

SIMPLE EXCHANGE SORT ALGORITHM
The following steps define an algorithm for sorting an array,

1. Set i to 0
2. Set j to i + 1
3. If a[i] > a[j], exchange their values
4. Set j to j + 1. If j < n goto step 3
5. Set i to i + 1. If i < n - 1 goto step 2
6. a is now sorted in ascending order.

Note: n is the number of elements in the array.

EXERCISE C18:
Implement the above algorithm as a function in C, accepting the array and its size, returning the sorted array in
ascending order so it can be printed out by the calling module. The array should consist of ten elements.

@ A SIMPLE EXCHANGE SORT ALGORITHM
The following steps define an algorithm for sorting an array,

1. Set i to 0
2. Set j to i + 1
3. If a[i] > a[j], exchange their values
4. Set j to j + 1. If j < n goto step 3
5. Set i to i + 1. If i < n - 1 goto step 2
6. a is now sorted in ascending order.

Note: n is the number of elements in the array.

EXERCISE C18
Implement the above algorithm as a function in C, accepting the array and its size, returning the sorted
array in ascending order so it can be printed out by the calling module. The array should consist of ten
elements.

75

#include <stdio.h>

void sort([], int);

void sort(array[], int elements)
{

int i, j, temp;

i = 0;
while(i < (elements - 1)) {

j = i + 1;
while(j < elements) {

if(a[i] > a[j]) {
temp = a[i];
a[i] = a[j];
a[j] = temp;

}
j++;

}
i++;

}
}

main()
{

int numbers[] = { 10, 9, 8, 23, 19, 11, 2, 7, 1, 13, 12 };
int loop;

printf("Before the sort the array was \n");
for(loop = 0; loop < 11; loop++)

printf(" %d ", numbers[loop]);
sort(numbers, 11);
printf("After the sort the array was \n");
for(loop = 0; loop < 11; loop++)

printf(" %d ", numbers[loop]);
}

RECURSION
This is where a function repeatedly calls itself to perform calculations. Typical applications are games
and Sorting trees and lists.

Consider the calculation of 6! (6 factorial)

 ie 6! = 6 * 5 * 4 * 3 * 2 * 1
 6! = 6 * 5!
 6! = 6 * (6 - 1)!
 n! = n * (n - 1)!

/* bad example for demonstrating recursion */
#include <stdio.h>

long int factorial(long int); /* ANSI function prototype */

76

long int factorial(long int n)
{

long int result;

if(n == 0L)
result = 1L;

else
result = n * factorial(n - 1L);

return (result);
}

main()
{

int j;

for(j = 0; j < 11; ++j)
printf("%2d! = %ld\n", factorial((long) j));

}

RECURSIVE PROGRAMMING: EXERCISE C19
Rewrite example c9 using a recursive function.

#include <stdio.h>
long int triang_rec(long int);

long int triang_rec(long int number)
{
 long int result;

 if(number == 0l)
 result = 0l;
 else
 result = number + triang_rec(number - 1);
 return(result);
}

main ()
{
 int request;
 long int triang_rec(), answer;

 printf("Enter number to be calculated.\n");
 scanf("%d", &request);

 answer = triang_rec((long int) request);
 printf("The triangular answer is %l\n", answer);
}

77

Note this version of function triang_rec

#include <stdio.h>
long int triang_rec(long int);

long int triang_rec(long int number)
{
 return((number == 0l) ? 0l : number*triang_rec(number-1));

Practise Exercise 8: Functions

1. Write a function called menu which prints the text string "Menu choices". The function does not
pass any data back, and does not accept any data as parameters.

void menu(void)
{

printf("Menu choices");
}

2. Write a function prototype for the above function.

void menu(void);

3. Write a function called print which prints a text string passed to it as a parameter (ie, a character
based array).

void print(char message[])
{

printf("%s, message);
}

4. Write a function prototype for the above function print.

void print(char []);

5. Write a function called total, which totals the sum of an integer array passed to it (as the first
parameter) and returns the total of all the elements as an integer. Let the second parameter to the
function be an integer which contains the number of elements of the array.

int total(int array[], int elements)
{

78

int loop, sum;

for(loop = 0, sum = 0; loop < elements; loop++)
sum += array[loop];

return sum;
}

6. Write a function prototype for the above function.

int total(int [], int);

Handling User Input In C
scanf() has problems, in that if a user is expected to type an integer, and types a string instead, often
the program bombs. This can be overcome by reading all input as a string (use getchar()), and then
converting the string to the correct data type.

/* example one, to read a word at a time */
#include <stdio.h>
#include <ctype.h>
#define MAXBUFFERSIZE 80

void cleartoendofline(void); /* ANSI function prototype */

void cleartoendofline(void)
{

char ch;
ch = getchar();
while(ch != '\n')

ch = getchar();
}

main()
{

char ch; /* handles user input */
char buffer[MAXBUFFERSIZE]; /* sufficient to handle one line */
int char_count; /* number of characters read for this line

*/
int exit_flag = 0;
int valid_choice;

while(exit_flag == 0) {
printf("Enter a line of text (<80 chars)\n");
ch = getchar();
char_count = 0;
while((ch != '\n') && (char_count < MAXBUFFERSIZE)) {

buffer[char_count++] = ch;
ch = getchar();

}

79

http://www.dsi.unive.it/~franz/c_program/c_068.htm
http://www.dsi.unive.it/~franz/c_program/c_030.htm
http://www.dsi.unive.it/~franz/c_program/c_016.htm#scanf

buffer[char_count] = 0x00; /* null terminate buffer */
printf("\nThe line you entered was:\n");
printf("%s\n", buffer);

valid_choice = 0;
while(valid_choice == 0) {

printf("Continue (Y/N)?\n");
scanf(" %c", &ch);
ch = toupper(ch);
if((ch == 'Y') || (ch == 'N'))

valid_choice = 1;
else

printf("\007Error: Invalid choice\n");
cleartoendofline();

}
if(ch == 'N') exit_flag = 1;

}
}

Another Example, read a number as a string

/* example two, reading a number as a string */
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#define MAXBUFFERSIZE 80

void cleartoendofline(void); /* ANSI function prototype */

void cleartoendofline(void)
{

char ch;
ch = getchar();
while(ch != '\n')

ch = getchar();
}

main()
{

char ch; /* handles user input */
char buffer[MAXBUFFERSIZE]; /* sufficient to handle one line */
int char_count; /* number of characters read for this line

*/
int exit_flag = 0, number, valid_choice;

while(exit_flag == 0) {
valid_choice = 0;
while(valid_choice == 0) {

printf("Enter a number between 1 and 1000\n");
ch = getchar();
char_count = 0;
while((ch != '\n') && (char_count < MAXBUFFERSIZE)) {

buffer[char_count++] = ch;
ch = getchar();

}
buffer[char_count] = 0x00; /* null terminate buffer */

80

number = atoi(buffer);
if((number < 1) || (number > 1000))

printf("\007Error. Number outside range 1-1000\n");
else

valid_choice = 1;
}
printf("\nThe number you entered was:\n");
printf("%d\n", number);

valid_choice = 0;
while(valid_choice == 0) {

printf("Continue (Y/N)?\n");
scanf(" %c", &ch);
ch = toupper(ch);
if((ch == 'Y') || (ch == 'N'))

valid_choice = 1;
else

printf("\007Error: Invalid choice\n");
cleartoendofline();

}
if(ch == 'N') exit_flag = 1;

}
}

More Data Validation
Consider the following program

#include <stdio.h>

main() {
int number;

printf("Please enter a number\n");
scanf("%d", &number);
printf("The number you entered was %d\n", number);

}

The above program has several problems
 the input is not validated to see if its the correct data type
 it is not clear if there are explicit number ranges expected
 the program might crash if an incorrect data type was entered

Perhaps the best way of handling input in C programs is to treat all input as a sequence of characters,
and then perform the necessary data conversion.

At this point we shall want to explore some other aspects also, like the concepts of

 trapping data at the source
 the domino/ripple effect

81

Trapping Data At The Source
This means that the validation of data as to its correct range/limit and data type is best done at the
point of entry. The benefits of doing this at the time of data entry are

 less cost later in the program maintenance phase (because data is already validated)
 programs are easier to maintain and modify
 reduces the chances of incorrect data crashing the program later on

The Ripple Through Effect
This refers to the problem of incorrect data which is allowed to propagate through the program. An
example of this is sending invalid data to a function to process.

By trapping data at the source, and ensuring that it is correct as to its data type and range, we ensure
that bad data cannot be passed onwards. This makes the code which works on processing the data
simpler to write and thus reduces errors.

An example
Lets look at the case of wanting to handle user input. Now, we know that users of programs out there
in user-land are a bunch of annoying people who spend most of their time inventing new and more
wonderful ways of making our programs crash.

Lets try to implement a sort of general purpose way of handling data input, as a replacement to scanf().
To do this, we will implement a function which reads the input as a sequence of characters.

The function is readinput(), which, in order to make it more versatile, accepts several parameters,

 a character array to store the inputted data
 an integer which specifies the data type to read, STRING, INTEGER, ALPHA
 an integer which specifies the amount of digits/characters to read

We have used the some of the functions covered in ctype.h to check the data type of the inputted data.

/* version 1.0 */
#include <stdio.h>
#include <ctype.h>

#define MAX 80 /* maximum length of buffer */
#define DIGIT 1 /* data will be read as digits 0-9 */
#define ALPHA 2 /* data will be read as alphabet A-Z */
#define STRING 3 /* data is read as ASCII */

void readinput(char buff[], int mode, int limit) {
int ch, index = 0;

ch = getchar();
while((ch != '\n') && (index < limit)) {

switch(mode) {
case DIGIT:

82

http://www.dsi.unive.it/~franz/c_program/c_030.htm

if(isdigit(ch)) {
buff[index] = ch;
index++;

}
break;

case ALPHA:
if(isalpha(ch)) {

buff[index] = ch;
index++;

}
break;

case STRING:
if(isascii(ch)) {

buff[index] = ch;
index++;

}
break;

default:
/* this should not occur */
break;

}
ch = getchar();

}
buff[index] = 0x00; /* null terminate input */

}

main() {
char buffer[MAX];
int number;

printf("Please enter an integer\n");
readinput(buffer, DIGIT, MAX);
number = atoi(buffer);
printf("The number you entered was %d\n", number);

}

Of course, there are improvements to be made. We can change readinput to return an integer value
which represents the number of characters read. This would help in determining if data was actually
entered. In the above program, it is not clear if the user actually entered any data (we could have
checked to see if buffer was an empty array).

So lets now make the changes and see what the modified program looks like

/* version 1.1 */
#include <stdio.h>
#include <ctype.h>

#define MAX 80 /* maximum length of buffer */
#define DIGIT 1 /* data will be read as digits 0-9 */
#define ALPHA 2 /* data will be read as alphabet A-Z */
#define STRING 3 /* data is read as ASCII */

int readinput(char buff[], int mode, int limit) {
int ch, index = 0;

83

ch = getchar();
while((ch != '\n') && (index < limit)) {

switch(mode) {
case DIGIT:

if(isdigit(ch)) {
buff[index] = ch;
index++;

}
break;

case ALPHA:
if(isalpha(ch)) {

buff[index] = ch;
index++;

}
break;

case STRING:
if(isascii(ch)) {

buff[index] = ch;
index++;

}
break;

default:
/* this should not occur */
break;

}
ch = getchar();

}
buff[index] = 0x00; /* null terminate input */
return index;

}

main() {
char buffer[MAX];
int number, digits = 0;

while(digits == 0) {
printf("Please enter an integer\n");
digits = readinput(buffer, DIGIT, MAX);
if(digits != 0) {

number = atoi(buffer);
printf("The number you entered was %d\n", number);

}
}

}

The second version is a much better implementation.

Controlling the cursor position
The following characters, placed after the \ character in a printf() statement, have the following effect.

\b backspace
\f form feed

84

\n new line
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\" double quote
\' single quote
\ line continuation
\nnn nnn = octal character value
\0xnn nn = hexadecimal value (some compilers only)

printf("\007Attention, that was a beep!\n");

FORMATTERS FOR scanf()
The following characters, after the % character, in a scanf argument, have the following effect.

d read a decimal integer
o read an octal value
x read a hexadecimal value
h read a short integer
l read a long integer
f read a float value
e read a double value
c read a single character
s read a sequence of characters
[...] Read a character string. The characters inside the brackets

indicate
the allow-able characters that are to be contained in the

string. If any
other character is typed, the string is terminated. If the

first character
is a ^, the remaining characters inside the brackets

indicate that
typing them will terminate the string.

 * this is used to skip input fields

Example of scanf() modifiers

int number;
char text1[30], text2[30];

scanf("%s %d %*f %s", text1, &number, text2);

If the user response is,

Hello 14 736.55 uncle sam

then
 text1 = hello, number = 14, text2 = uncle

and the next call to the scanf function will continue from where the last one left off, so if
scanf("%s ", text2);

85

was the next call, then
 text2 = sam

PRINTING OUT THE ASCII VALUES OF CHARACTERS
Enclosing the character to be printed within single quotes will instruct the compiler to print out the
Ascii value of the enclosed character.

printf("The character A has a value of %d\n", 'A');

The program will print out the integer value of the character A.

EXERCISE C20:
What would the result of the following operation be?

@ int c;
c = 'a' + 1;
printf("%c\n", c);

int c;
c = 'a' + 1;
printf("%c\n", c);

The program adds one to the value 'a', resulting in the value 'b' as the
value which is assigned to the variable c.

BIT OPERATIONS

C has the advantage of direct bit manipulation and the operations available are,

Operation Operator Comment Value of Sum before Value of sum after

AND & sum = sum & 2; 4 0

OR | sum = sum | 2; 4 6

Exclusive OR ^ sum = sum ^ 2; 4 6

1's Complement ~ sum = ~sum; 4 -5

Left Shift << sum = sum << 2; 4 16

Right Shift >> sum = sum >> 2; 4 0

/* Example program illustrating << and >> */
#include <stdio.h>

86

main()
{

int n1 = 10, n2 = 20, i = 0;

i = n2 << 4; /* n2 shifted left four times */
printf("%d\n", i);
i = n1 >> 5; /* n1 shifted right five times */
printf("%d\n", i);

}

/* Example program using EOR operator */
#include <stdio.h>

main()
{

int value1 = 2, value2 = 4;

value1 ^= value2;
value2 ^= value1;
value1 ^= value2;
printf("Value1 = %d, Value2 = %d\n", value1, value2);

}

/* Example program using AND operator */
#include <stdio.h>

main()
{

int loop;

for(loop = 'A'; loop <= 'Z'; loop++)
printf("Loop = %c, AND 0xdf = %c\n", loop, loop & 0xdf);

}

STRUCTURES
A Structure is a data type suitable for grouping data elements together. Lets create a new data structure
suitable for storing the date. The elements or fields which make up the structure use the four basic data
types. As the storage requirements for a structure cannot be known by the compiler, a definition for the
structure is first required. This allows the compiler to determine the storage allocation needed, and also
identifies the various sub-fields of the structure.

struct date {
int month;
int day;
int year;

};

87

This declares a NEW data type called date. This date structure consists of three basic data elements, all
of type integer. This is a definition to the compiler. It does not create any storage space and cannot
be used as a variable. In essence, its a new data type keyword, like int and char, and can now be used
to create variables. Other data structures may be defined as consisting of the same composition as the
date structure,

struct date todays_date;

defines a variable called todays_date to be of the same data type as that of the newly defined data type
struct date.

ASSIGNING VALUES TO STRUCTURE ELEMENTS
To assign todays date to the individual elements of the structure todays_date, the statement

todays_date.day = 21;
todays_date.month = 07;
todays_date.year = 1985;

is used. NOTE the use of the .element to reference the individual elements within todays_date.

/* Program to illustrate a structure */
#include <stdio.h>

struct date { /* global definition of type date */
int month;
int day;
int year;

};

main()
{

struct date today;

today.month = 10;
today.day = 14;
today.year = 1995;

printf("Todays date is %d/%d/%d.\n", \
today.month, today.day, today.year);

}

EXERCISE C21:
Write a program in C that prompts the user for todays date, calculates tomorrows date, and displays
the result. Use structures for todays date, tomorrows date, and an array to hold the days for each month
of the year. Remember to change the month or year as necessary.

@ #include <stdio.h>

88

struct date {
int day, month, year;

};

int days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
struct date today, tommorrow;

void gettodaysdate(void);

void gettodaysdate(void)
{

int valid = 0;

while(valid == 0) {
printf("Enter in the current year (1990-1999)-->");
scanf("&d", &today.year);
if((today.year < 1990) || (today.year > 1999))

printf("\007Invalid year\n");
else

valid = 1;
}
valid = 0;
while(valid == 0) {

printf("Enter in the current month (1-12)-->");
scanf("&d", &today.month);
if((today.month < 1) || (today.month > 12))

printf("\007Invalid month\n");
else

valid = 1;
}
valid = 0;
while(valid == 0) {

printf("Enter in the current day (1-%d)-->",
days[today.month-1]);

scanf("&d", &today.day);
if((today.day < 1) || (today.day > days[today.month-1]))

printf("\007Invalid day\n");
else

valid = 1;
}

}

main()
{

gettodaysdate();
tommorrow = today;
tommorrow.day++;
if(tommorrow.day > days[tommorrow.month-1]) {

tommorrow.day = 1;
tommorrow.month++;
if(tommorrow.month > 12)

tommorrow.year++;
}
printf("Tommorrows date is %02d:%02d:%02d\n", \

tommorrow.day, tommorrow.month, tommorrow.year);
}

89

/* TIME.C Program updates time by 1 second using functions */
#include <stdio.h>

struct time {
 int hour, minutes, seconds;
};

void time time_update(struct time); /* ANSI function prototype */

/* function to update time by one second */
void time_update(struct new_time)
{

++new_time.seconds;
if(new_time.seconds == 60) {

new_time.seconds = 0;
++new_time.minutes;
if(new_time.minutes == 60) {

new_time.minutes = 0;
++new_time.hour;
if(new_time.hour == 24)

new_time.hour = 0;
}

}
}

main()
{

void time time_update();
struct time current_time;

printf("Enter the time (hh:mm:ss):\n");
scanf("%d:%d:%d", \

¤t_time.hour,¤t_time.minutes,¤t_time.seconds);
time_update (current_time);
printf("The new time is %02d:%02d:%02d\n",current_time.hour, \

current_time.minutes, current_time.seconds);
}

INITIALIZING STRUCTURES
This is similar to the initialization of arrays; the elements are simply listed inside a pair of braces, with
each element separated by a comma. The structure declaration is preceded by the keyword static

static struct date today = { 4,23,1998 };

ARRAYS OF STRUCTURES
Consider the following,

struct date {

90

 int month, day, year;
};

Lets now create an array called birthdays of the same data type as the structure date

struct date birthdays[5];

This creates an array of 5 elements which have the structure of date.

birthdays[1].month = 12;
birthdays[1].day = 04;
birthdays[1].year = 1998;
--birthdays[1].year;

STRUCTURES AND ARRAYS
Structures can also contain arrays.

struct month {
int number_of_days;
char name[4];

};

static struct month this_month = { 31, "Jan" };

this_month.number_of_days = 31;
strcpy(this_month.name, "Jan");
printf("The month is %s\n", this_month.name);

Note that the array name has an extra element to hold the end of string nul character.

VARIATIONS IN DECLARING STRUCTURES
Consider the following,

struct date {
 int month, day, year;
} todays_date, purchase_date;

or another way is,

struct date {
 int month, day, year;
} todays_date = { 9,25,1985 };

or, how about an array of structures similar to date,

struct date {
 int month, day, year;
} dates[100];

Declaring structures in this way, however, prevents you from using the structure definition later in the
program. The structure definition is thus bound to the variable name which follows the right brace of
the structures definition.

EXERCISE C22:

91

@ #include <stdio.h>

struct date { /* Global definition of date */
int day, month, year;

};

main()
{

struct date dates[5];
int i;

for(i = 0; i < 5; ++i) {
printf("Please enter the date (dd:mm:yy)");
scanf("%d:%d:%d", &dates[i].day, &dates[i].month,

&dates[i].year);
}

}

STRUCTURES WHICH CONTAIN STRUCTURES
Structures can also contain structures. Consider where both a date and time structure are combined
into a single structure called date_time, eg,

struct date {
int month, day, year;

};

struct time {
int hours, mins, secs;

};

struct date_time {
struct date sdate;
struct time stime;

};

This declares a structure whose elements consist of two other previously declared structures.
Initialization could be done as follows,

static struct date_time today = { { 2, 11, 1985 }, { 3, 3,33 } };

which sets the sdate element of the structure today to the eleventh of February, 1985. The stime
element of the structure is initialized to three hours, three minutes, thirty-three seconds. Each item
within the structure can be referenced if desired, eg,

++today.stime.secs;
if(today.stime.secs == 60) ++today.stime.mins;

92

BIT FIELDS
Consider the following data elements defined for a PABX telephone system.

flag = 1 bit
off_hook = 1 bit
status = 2 bits

In C, these can be defined as a structure, and the number of bits each occupy can be specified.

struct packed_struct {
unsigned int flag:1;
unsigned int off_hook:1;
unsigned int status:2;

} packed_struct1;

The :1 following the variable flag indicates that flag occupies a single bit. The C compiler will assign
all the above fields into a single word.

Assignment is as follows,

packed_struct1.flag = 0;
packed_struct1.status = 4;
if(packed_struct1.flag)

.............

Practise Exercise 9: Structures

1. Define a structure called record which holds an integer called loop, a character array of 5 elements
called word, and a float called sum.

struct record {
int loop;
char word[5];
float sum;

};

2. Declare a structure variable called sample, defined from a structure of type struct record.

struct record sample;

3. Assign the value 10 to the field loop of the sample structure of type struct record.

sample.loop = 10;

4. Print out (using printf) the value of the word array of the sample structure.

printf("%s", sample.word);

5. Define a new structure called birthdays, whose fields are a structure of type struct time called btime,
and a structure of type struct date, called bdate.

93

struct birthdays {
struct time btime;
struct date bdate;

};

DATA CONVERSION
The following functions convert between data types.

atof() converts an ascii character array to a float
atoi() converts an ascii character array to an integer
itoa() converts an integer to a character array

Example

/* convert a string to an integer */
#include <stdio.h>
#include <stdlib.h>

char string[] = "1234";

main()
{

int sum;
sum = atoi(string);
printf("Sum = %d\n", sum);

}

/* convert an integer to a string */
#include <stdio.h>
#include <stdlib.h>

main()
{

int sum;
char buff[20];

printf("Enter in an integer ");
scanf(" %d", &sum);
printf("As a string it is %s\n", itoa(sum, buff, 10));

}

Note that itoa() takes three parameters,

 the integer to b converted

 a character buffer into which the resultant string is stored

94

 a radix value (10=decimal, 16=hexadecimal)

In addition, itoa() returns a pointer to the resultant string.

FILE INPUT/OUTPUT
To work with files, the library routines must be included into your programs. This is done by the
statement,

#include <stdio.h>

as the first statement of your program.

USING FILES
 Declare a variable of type FILE

To use files in C programs, you must declare a file variable to use. This variable must be of
type FILE, and be declared as a pointer type.

FILE is a predefined type. You declare a variable of this type as

FILE *in_file;

This declares infile to be a pointer to a file.

 Associate the variable with a file using fopen()
Before using the variable, it is associated with a specific file by using the fopen() function,
which accepts the pathname for the file and the access mode (like reading or writing).

 in_file = fopen("myfile.dat", "r");

In this example, the file myfile.dat in the current directory is opened for read access.

 Process the data in the file
Use the appropriate file routines to process the data

 When finished processing the file, close it
Use the fclose() function to close the file.

 fclose(in_file);

The following illustrates the fopen function, and adds testing to see if the file was opened successfully.

#include <stdio.h>
/* declares pointers to an input file, and the fopen function */
FILE *input_file, *fopen ();

95

/* the pointer of the input file is assigned the value returned from the
fopen call. */

/* fopen tries to open a file called datain for read only. Note that */
/* "w" = write, and "a" = append. */
input_file = fopen("datain", "r");

/* The pointer is now checked. If the file was opened, it will point to
the first */

/* character of the file. If not, it will contain a NULL or 0. */
if(input_file == NULL) {

printf("*** datain could not be opened.\n");
printf("returning to dos.\n");
exit(1);

}

NOTE: Consider the following statement, which combines the opening of the file and its test to see if
it was successfully opened into a single statement.

if((input_file = fopen ("datain", "r")) == NULL) {
printf("*** datain could not be opened.\n");
printf("returning to dos.\n");
exit(1);

}

INPUTTING/OUTPUTTING SINGLE CHARACTERS
Single characters may be read/written with files by use of the two functions, getc(), and putc().

int ch;

ch = getc(input_file); /* assigns character to ch */

The getc() also returns the value EOF (end of file), so

while((ch = getc(input_file)) != EOF)
......................

NOTE that the putc/getc are similar to getchar/putchar except that arguments are supplied specifying
the I/O device.

putc('\n', output_file); /* writes a newline to output file */

96

CLOSING FILES
When the operations on a file are completed, it is closed before the program terminates. This allows
the operating system to cleanup any resources or buffers associated with the file. The fclose() function
is used to close the file and flush any buffers associated with the file.

fclose(input_file);
fclose(output_file);

COPYING A FILE
The following demonstrates copying one file to another using the functions we have just covered.

#include <stdio.h>

main() /* FCOPY.C */
{

char in_name[25], out_name[25];
FILE *in_file, *out_file, *fopen ();
int c;

printf("File to be copied:\n");
scanf("%24s", in_name);
printf("Output filename:\n");
scanf("%24s", out_name);

in_file = fopen (in_name, "r");

if(in_file == NULL)
printf("Cannot open %s for reading.\n", in_name);

else {
out_file = fopen (out_name, "w");
if(out_file == NULL)

printf("Can't open %s for writing.\n",out_name);
else {

while((c = getc(in_file)) != EOF)
putc (c, out_file);

putc (c, out_file); /* copy EOF */
printf("File has been copied.\n");
fclose (out_file);

}
fclose (in_file);

}
}

TESTING FOR THE End Of File TERMINATOR (feof)
This is a built in function incorporated with the stdio.h routines. It returns 1 if the file pointer is at the
end of the file.

if(feof (input_file))
printf("Ran out of data.\n");

97

THE fprintf AND fscanf STATEMENTS
These perform the same function as printf and scanf, but work on files. Consider,

fprintf(output_file, "Now is the time for all..\n");
fscanf(input_file, "%f", &float_value);

THE fgets AND fputs STATEMENTS
These are useful for reading and writing entire lines of data to/from a file. If buffer is a pointer to a
character array and n is the maximum number of characters to be stored, then

fgets (buffer, n, input_file);

will read an entire line of text (max chars = n) into buffer until the newline character or n=max,
whichever occurs first. The function places a NULL character after the last character in the buffer. The
function will be equal to a NULL if no more data exists.

fputs (buffer, output_file);

writes the characters in buffer until a NULL is found. The NULL character is not written to the
output_file.

NOTE: fgets does not store the newline into the buffer, fputs will append a newline to the line written
to the output file.

Practise Exercise 9A: File Handling

1. Define an input file handle called input_file, which is a pointer to a type FILE.

FILE *input_file;

2. Using input_file, open the file results.dat for read mode.

input_file = fopen("results.dat", "r");

3. Write C statements which tests to see if input_file has opened the data file successfully. If not, print
an error message and exit the program.

if(input_file == NULL) {
printf("Unable to open file.\n");\
exit(1);

}

98

4. Write C code which will read a line of characters (terminated by a \n) from input_file into a
character array called buffer. NULL terminate the buffer upon reading a \n.

int ch, loop = 0;

ch = fgetc(input_file);
while((ch != '\n') && (ch != EOF)) {

buffer[loop] = ch;
loop++;
ch = fgetc(input_file);

}
buffer[loop] = NULL;

5. Close the file associated with input_file.

fclose(input_file);

File handling using open(), read(), write() and close()
The previous examples of file handling deal with File Control Blocks (FCB). Under MSDOS v3.x (or
greater) and UNIX systems, file handling is often done using handles, rather than file control blocks.

Writing programs using handles ensures portability of source code between different operating
systems. Using handles allows the programmer to treat the file as a stream of characters.

open()

#include <fcntl.h>
int open(char *filename, int access, int permission);

The available access modes are

O_RDONLY O_WRONLY O_RDWR
O_APPEND O_BINARY O_TEXT

The permissions are

S_IWRITE S_IREAD S_IWRITE | S_IREAD

The open() function returns an integer value, which is used to refer to the file. If un- successful, it
returns -1, and sets the global variable errno to indicate the error type.

99

read()

#include <fcntl.h>
int read(int handle, void *buffer, int nbyte);

The read() function attempts to read nbytes from the file associated with handle, and places the
characters read into buffer. If the file is opened using O_TEXT, it removes carriage returns and detects
the end of the file.

The function returns the number of bytes read. On end-of-file, 0 is returned, on error it returns -1,
setting errno to indicate the type of error that occurred.

write()

#include <fcntl.h>
int write(int handle, void *buffer, int nbyte);

The write() function attempts to write nbytes from buffer to the file associated with handle. On text
files, it expands each LF to a CR/LF.

The function returns the number of bytes written to the file. A return value of -1 indicates an error,
with errno set appropriately.

close()

#include <fcntl.h>
int close(int handle);

The close() function closes the file associated with handle. The function returns 0 if successful, -1 to
indicate an error, with errno set appropriately.

POINTERS
Pointers enable us to effectively represent complex data structures, to change values as arguments to
functions, to work with memory which has been dynamically allocated, and to more concisely and
efficiently deal with arrays. A pointer provides an indirect means of accessing the value of a particular
data item. Lets see how pointers actually work with a simple example,

int count = 10, *int_pointer;

declares an integer count with a value of 10, and also an integer pointer called int_pointer. Note that
the prefix * defines the variable to be of type pointer. To set up an indirect reference between
int_pointer and count, the & prefix is used, ie,

int_pointer = &count;

100

This assigns the memory address of count to int_pointer, not the actual value of count stored at that
address.

POINTERS CONTAIN MEMORY ADDRESSES, NOT VALUES!

To reference the value of count using int_pointer, the * is used in an assignment, eg,

x = *int_pointer;

Since int_pointer is set to the memory address of count, this operation has the effect of assigning the
contents of the memory address pointed to by int_pointer to the variable x, so that after the operation
variable x has a value of 10.

#include <stdio.h>

main()
{

int count = 10, x, *int_pointer;

/* this assigns the memory address of count to int_pointer */
int_pointer = &count;

/* assigns the value stored at the address specified by int_pointer
to x */

x = *int_pointer;

printf("count = %d, x = %d\n", count, x);
}

This however, does not illustrate a good use for pointers.

The following program illustrates another way to use pointers, this time with characters,

#include <stdio.h>

main()
{

char c = 'Q';
char *char_pointer = &c;

printf("%c %c\n", c, *char_pointer);

c = 'Z';
printf("%c %c\n", c, *char_pointer);
*char_pointer = 'Y';
/* assigns Y as the contents of the memory address specified by

char_pointer */

printf("%c %c\n", c, *char_pointer);

101

}

EXERCISE C23:
Determine the output of the pointer programs P1, P2, and P3.

/* P1.C illustrating pointers */
#include <stdio.h>

main()
{

int count = 10, x, *int_pointer;

/* this assigns the memory address of count to int_pointer */
int_pointer = &count;

/* assigns the value stored at the address specified by int_pointer
to x */

x = *int_pointer;

printf("count = %d, x = %d\n", count, x);
}

/* P2.C Further examples of pointers */
#include <stdio.h>

main()
{

char c = 'Q';
char *char_pointer = &c;

printf("%c %c\n", c, *char_pointer);

c = '/';
printf("%c %c\n", c, *char_pointer);
*char_pointer = '(';

/* assigns (as the contents of the memory address specified by
char_pointer */

printf("%c %c\n", c, *char_pointer);
}

@ Determine the output of the pointer programs P1, P2, and P3.

102

/* P1.C illustrating pointers */
#include <stdio.h>

main()
{

int count = 10, x, *int_pointer;

/* this assigns the memory address of count to int_pointer */
int_pointer = &count;

/* assigns the value stored at the address specified by int_pointer
to x */

x = *int_pointer;

printf("count = %d, x = %d\n", count, x);
}

count = 10, x = 10;

/* P2.C Further examples of pointers */
#include <stdio.h>

main()
{

char c = 'Q';
char *char_pointer = &c;

printf("%c %c\n", c, *char_pointer);

c = '/';
printf("%c %c\n", c, *char_pointer);
*char_pointer = '(';

/* assigns (as the contents of the memory address specified by
char_pointer */

printf("%c %c\n", c, *char_pointer);
}

Q Q
/ /
((

/* P3.C Another program with pointers */
#include <stdio.h>

main()
{

int i1, i2, *p1, *p2;

i1 = 5;
p1 = &i1;

103

i2 = *p1 / 2 + 10;
p2 = p1;

printf("i1 = %d, i2 = %d, *p1 = %d, *p2 = %d\n", i1, i2, *p1, *p2);
}

i1 = 5, i2 = 12, *p1 = 5, *p2 = 5

Practise Exercise 10: Pointers

1. Declare a pointer to an integer called address.

int *address;

2. Assign the address of a float variable balance to the float pointer temp.

temp = &balance;

3. Assign the character value 'W' to the variable pointed to by the char pointer letter.

*letter = 'W';

4. What is the output of the following program segment?

int count = 10, *temp; sum = 0;

temp = &count;
*temp = 20;
temp = ∑
*temp = count;
printf("count = %d, *temp = %d, sum = %d\n", count, *temp, sum);

count = 20, *temp = 20, sum = 20

5. Declare a pointer to the text string "Hello" called message.

char *message = "Hello";

104

POINTERS AND STRUCTURES
Consider the following,

struct date {
int month, day, year;

};

struct date todays_date, *date_pointer;

date_pointer = &todays_date;

(*date_pointer).day = 21;
(*date_pointer).year = 1985;
(*date_pointer).month = 07;

++(*date_pointer).month;
if((*date_pointer).month == 08)

......

Pointers to structures are so often used in C that a special operator exists. The structure pointer
operator, the ->, permits expressions that would otherwise be written as,

(*x).y

to be more clearly expressed as

x->y

making the if statement from above program

if(date_pointer->month == 08)
.....

/* Program to illustrate structure pointers */
#include <stdio.h>

main()
{

struct date { int month, day, year; };
struct date today, *date_ptr;

date_ptr = &today;
date_ptr->month = 9;
date_ptr->day = 25;
date_ptr->year = 1983;

printf("Todays date is %d/%d/%d.\n", date_ptr->month, \
date_ptr->day, date_ptr->year % 100);

}

105

So far, all that has been done could've been done without the use of pointers. Shortly, the real value of
pointers will become apparent.

STRUCTURES CONTAINING POINTERS
Naturally, a pointer can also be a member of a structure.

struct int_pointers {
int *ptr1;
int *ptr2;

};

In the above, the structure int_pointers is defined as containing two integer pointers, ptr1 and ptr2. A
variable of type struct int_pointers can be defined in the normal way, eg,

struct int_pointers ptrs;

The variable ptrs can be used normally, eg, consider the following program,

#include <stdio.h>
main() /* Illustrating structures containing pointers */
{

struct int_pointers { int *ptr1, *ptr2; };
struct int_pointers ptrs;
int i1 = 154, i2;

ptrs.ptr1 = &i1;
ptrs.ptr2 = &i2;
(*ptrs).ptr2 = -97;
printf("i1 = %d, *ptrs.ptr1 = %d\n", i1, *ptrs.ptr1);
printf("i2 = %d, *ptrs.ptr2 = %d\n", i2, *ptrs.ptr2);

}

The following diagram may help to illustrate the connection,

|------------|
| i1 |<--------------

i2	<-------	

ptr1	---------------	
------------		ptrs
ptr2	--------	

106

POINTERS AND CHARACTER STRINGS
A pointer may be defined as pointing to a character string.

#include <stdio.h>

main()
{

char *text_pointer = "Good morning!";

for(; *text_pointer != '\0'; ++text_pointer)
printf("%c", *text_pointer);

}

or another program illustrating pointers to text strings,

#include <stdio.h>

main()
{

static char *days[] = {"Sunday", "Monday", "Tuesday",
"Wednesday", \

"Thursday", "Friday",
"Saturday"};

int i;

for(i = 0; i < 6; ++i)
printf("%s\n", days[i]);

}

Remember that if the declaration is,

 char *pointer = "Sunday";

then the null character { '\0' } is automatically appended to the end of the text string. This means that
%s may be used in a printf statement, rather than using a for loop and %c to print out the contents of
the pointer. The %s will print out all characters till it finds the null terminator.

Practise Exercise 11: Pointers & Structures

1. Declare a pointer to a structure of type date called dates.

struct date *dates;

2. If the above structure of type date comprises three integer fields, day, month, year, assign the value
10 to the field day using the dates pointer.

107

dates->day = 10;

3. A structure of type machine contains two fields, an integer called name, and a char pointer called
memory. Show what the definition of the structure looks like.

|-----------| <---------
| | name |
|-----------| | machine
| | memory |
|-----------| <---------

4. A pointer called mpu641 of type machine is declared. What is the command to assign the value
NULL to the field memory.

mpu641->memory = (char *) NULL;

5. Assign the address of the character array CPUtype to the field memory using the pointer mpu641.

mpu641->memory = CPUtype;

6. Assign the value 10 to the field name using the pointer mpu641.

mpu641->name = 10;

7. A structure pointer times of type time (which has three fields, all pointers to integers, day, month and
year respectively) is declared. Using the pointer times, update the field day to 10.

*(times->day) = 10;

8. An array of pointers (10 elements) of type time (as detailed above in 7.), called sample is declared.
Update the field month of the third array element to 12.

*(sample[2]->month) = 12;

#include <stdio.h>

struct machine {
 int name;

108

 char *memory;
};

struct machine p1, *mpu641;

main()
{
 p1.name = 3;
 p1.memory = "hello";
 mpu641 = &p1;
 printf("name = %d\n", mpu641->name);
 printf("memory = %s\n", mpu641->memory);

 mpu641->name = 10;
 mpu641->memory = (char *) NULL;
 printf("name = %d\n", mpu641->name);
 printf("memory = %s\n", mpu641->memory);
}

#include <stdio.h>

struct time {
 int *day;
 int *month;
 int *year;
};

struct time t1, *times;

main()
{
 int d=5, m=12, y=1995;

 t1.day = &d;
 t1.month = &m;
 t1.year = &y;

 printf("day:month:year = %d:%d:%d\n", *t1.day, *t1.month, *t1.year);

 times = &t1;

 *(times->day) = 10;
 printf("day:month:year = %d:%d:%d\n", *t1.day, *t1.month, *t1.year);
}

Practise Exercise 11a: Pointers & Structures

Determine the output of the following program.

109

#include <stdio.h>
#include <string.h>

struct record {
char name[20];
int id;
float price;

};

void editrecord(struct record *);

void editrecord(struct record *goods)
{

strcpy(goods->name, "Baked Beans");
goods->id = 220;
(*goods).price = 2.20;
printf("Name = %s\n", goods->name);
printf("ID = %d\n", goods->id);
printf("Price = %.2f\n", goods->price);

}

main()
{

struct record item;

strcpy(item.name, "Red Plum Jam");
editrecord(&item);
item.price = 2.75;
printf("Name = %s\n", item.name);
printf("ID = %d\n", item.id);
printf("Price = %.2f\n", item.price);

}

1. Before call to editrecord()

@ item.name = "Red Plum Jam"
item.id = 0
item.price = 0.0

2. After return from editrecord()

@ item.name = "Baked Beans"
item.id = 220
item.price = 2.20

3. The final values of values, item.name, item.id, item.price

@ item.name = "Baked Beans"

110

item.id = 220
item.price = 2.75

C25: Examples on Pointer Usage
Determine the output of the following program.

#include <stdio.h>
#include <string.h>

struct sample {
char *name;
int *id;
float price;

};

static char product[]="Red Plum Jam";

main()
{

int code = 312, number;
char name[] = "Baked beans";
struct sample item;

item.name = product;
item.id = &code;
item.price = 2.75;
item.name = name;
number = *item.id;
printf("Name = %s\n", item.name);
printf("ID = %d\n", *item.id);
printf("Price = %.2f\n", item.price);

}

@ Name = Baked Beans
ID = 312
Price = 2.75

C26: Examples on Pointer Usage
Determine the output of the following program.

#include <stdio.h>
#include <string.h>

struct sample {
char *name;
int *id;
float price;

};

111

static char product[] = "Greggs Coffee";
static float price1 = 3.20;
static int id = 773;

void printrecord(struct sample *);

void printrecord(struct sample *goods)
{

printf("Name = %s\n", goods->name);
printf("ID = %d\n", *goods->id);
printf("Price = %.2f\n", goods->price);
goods->name = &product[0];
goods->id = &id;
goods->price = price1;

}

main()
{

int code = 123, number;
char name[] = "Apple Pie";
struct sample item;

item.id = &code;
item.price = 1.65;
item.name = name;
number = *item.id;
printrecord(&item);
printf("Name = %s\n", item.name);
printf("ID = %d\n", *item.id);
printf("Price = %.2f\n", item.price);

}

@ What are we trying to print out?

What does it evaluate to?

eg,

printf("ID = %d\n", *goods->id);
%d is an integer

we want the value to be a variable integer type
goods->id,

what is id, its a pointer, so we mean contents of,
therefor we use *goods->id

which evaluates to an integer type

Name = Apple Pie
ID = 123
Price = 1.65

Name = Greggs Coffee
ID = 773

112

Price = 3.20

File Handling Example

/* File handling example for PR101 */
/* processing an ASCII file of records */
/* Written by B. Brown, April 1994 */

/* process a goods file, and print out */
/* all goods where the quantity on */
/* hand is less than or equal to the */
/* re-order level. */

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <stdlib.h>

/* definition of a record of type goods */
struct goods {
 char name[20]; /* name of product */
 float price; /* price of product */
 int quantity; /* quantity on hand */
 int reorder; /* re-order level */
};

/* function prototypes */
void myexit(int);
void processfile(void);
void printrecord(struct goods);
int getrecord(struct goods *);

/* global data variables */
FILE *fopen(), *input_file; /* input file pointer */

/* provides a tidy means to exit program gracefully */
void myexit(int exitcode)
{
 if(input_file != NULL)
 fclose(input_file);
 exit(exitcode);
}

/* prints a record */
void printrecord(struct goods record)
{
 printf("\nProduct name\t%s\n", record.name);
 printf("Product price\t%.2f\n", record.price);
 printf("Product quantity\t%d\n", record.quantity);
 printf("Product reorder level\t%d\n", record.reorder);
}

/* reads one record from inputfile into 'record', returns 1 for success */

113

int getrecord(struct goods *record)
{
 int loop = 0, ch;
 char buffer[40];

 ch = fgetc(input_file);
 /* skip to start of record */
 while((ch == '\n') || (ch == ' ') && (ch != EOF))
 ch = fgetc(input_file);
 if(ch == EOF) return 0;

 /* read product name */
 while((ch != '\n') && (ch != EOF)) {
 buffer[loop++] = ch;
 ch = fgetc(input_file);
 }
 buffer[loop] = 0;
 strcpy(record->name, buffer);
 if(ch == EOF) return 0;

 /* skip to start of next field */
 while((ch == '\n') || (ch == ' ') && (ch != EOF))
 ch = fgetc(input_file);
 if(ch == EOF) return 0;

 /* read product price */
 loop = 0;
 while((ch != '\n') && (ch != EOF)) {
 buffer[loop++] = ch;
 ch = fgetc(input_file);
 }
 buffer[loop] = 0;
 record->price = atof(buffer);
 if(ch == EOF) return 0;

 /* skip to start of next field */
 while((ch == '\n') || (ch == ' ') && (ch != EOF))
 ch = fgetc(input_file);
 if(ch == EOF) return 0;

 /* read product quantity */
 loop = 0;
 while((ch != '\n') && (ch != EOF)) {
 buffer[loop++] = ch;
 ch = fgetc(input_file);
 }
 buffer[loop] = 0;
 record->quantity = atoi(buffer);
 if(ch == EOF) return 0;

 /* skip to start of next field */
 while((ch == '\n') || (ch == ' ') && (ch != EOF))
 ch = fgetc(input_file);
 if(ch == EOF) return 0;

 /* read product reorder level */
 loop = 0;

114

 while((ch != '\n') && (ch != EOF)) {
 buffer[loop++] = ch;
 ch = fgetc(input_file);
 }
 buffer[loop] = 0;
 record->reorder = atoi(buffer);
 if(ch == EOF) return 0;

 return 1; /* signify record has been read successfully */
}

/* processes file for records */
void processfile(void)
{
 struct goods record; /* holds a record read from inputfile */

 while(! feof(input_file)) {
 if(getrecord(&record) == 1) {
 if(record.quantity <= record.reorder)
 printrecord(record);
 }
 else myexit(1); /* error getting record */
 }
}

main()
{
 char filename[40]; /* name of database file */

 printf("Example Goods Re-Order File Program\n");
 printf("Enter database file ");
 scanf(" %s", filename);
 input_file = fopen(filename, "rt");
 if(input_file == NULL) {
 printf("Unable to open datafile %s\n", filename);
 myexit(1);
 }
 processfile();
 myexit(0);
}

Please obtain the data file for this example from your tutor, or via ftp.

File Handling Example
The data file for this exercise looks like,

baked beans
1.20
10
5

greggs coffee
2.76
5

115

10

walls ice-cream
3.47
5
5

cadburys chocs
4.58
12
10

LINKED LISTS
A linked list is a complex data structure, especially useful in systems or applications programming. A
linked list is comprised of a series of nodes, each node containing a data element, and a pointer to the
next node, eg,

 -------- --------
| data | --->| data |
|--------| | |--------|
| pointer|---- | pointer| ---> NULL
 -------- --------

A structure which contains a data element and a pointer to the next node is created by,

struct list {
int value;
struct list *next;

};

This defines a new data structure called list (actually the definition of a node), which contains two
members. The first is an integer called value. The second is called next, which is a pointer to another
list structure (or node). Suppose that we declare two structures to be of the same type as list, eg,

struct list n1, n2;

The next pointer of structure n1 may be set to point to the n2 structure by

/* assign address of first element in n2 to the pointer next of the n1
structure */

n1.next = &n2;

which creates a link between the two structures.

/* LLIST.C Program to illustrate linked lists */
#include <stdio.h>

116

http://www.dsi.unive.it/~franz/c_program/c_076.htm

struct list {
int value;
struct list *next;

};

main()
{

struct list n1, n2, n3;
int i;

n1.value = 100;
n2.value = 200;
n3.value = 300;
n1.next = &n2;
n2.next = &n3;
i = n1.next->value;
printf(%d\n", n2.next->value);

}

Not only this, but consider the following

n1.next = n2.next /* deletes n2 */
n2_3.next = n2.next; /* adds struct n2_3 */
n2.next = &n2_3;

In using linked list structures, it is common to assign the value of 0 to the last pointer in the list, to
indicate that there are no more nodes in the list, eg,

n3.next = 0;

Traversing a linked list

/* Program to illustrate traversing a list */
#include <stdio.h>
struct list {

int value;
struct list *next;

};

main()
{

struct list n1, n2, n3, n4;
struct list *list_pointer = &n1;

n1.value = 100;
n1.next = &n2;
n2.value = 200;
n2.next = &n3;
n3.value = 300;
n3.next = &n4;
n4.value = 400;

117

n4.next = 0;

while(list_pointer != 0) {
printf("%d\n", list_pointer->value);
list_pointer = list_pointer->next;

}
}

This program uses a pointer called list_pointer to cycle through the linked list.

Practise Exercise 12: Lists

. Define a structure called node, which contains an integer element called data, and a pointer to a
structure of type node called next_node.

2. Declare three structures called node1, node2, node3, of type node.

3. Write C statements which will link the three nodes together, with node1 at the head of the list, node2
second, and node3 at the tail of the list. Assign the value NULL to node3.next to signify the end of the
list.

4. Using a pointer list, of type node, which has been initialised to the address of node1, write C
statements which will cycle through the list and print out the value of each nodes data field.

5. Assuming that pointer list points to node2, what does the following statement do?

list->next_node = (struct node *) NULL;

6. Assuming the state of the list is that as in 3., write C statements which will insert a new node
node1a between node1 and node2, using the pointer list (which is currently pointing to node1).
Assume that a pointer new_node points to node node1a.

7. Write a function called delete_node, which accepts a pointer to a list, and a pointer to the node to be
deleted from the list, eg

void delete_node(struct node *head, struct node *delnode);

8. Write a function called insert_node, which accepts a pointer to a list, a pointer to a new node to be
inserted, and a pointer to the node after which the insertion takes place, eg

118

void insert_node(struct node *head, struct node *newnode, struct node
*prevnode);

Answers

Practise Exercise 12: Lists

1. Define a structure called node, which contains an integer element called data, and a pointer to a
structure of type node called next_node.

struct node {
int data;
struct node *next_node;

};

2. Declare three structures called node1, node2, node3, of type node.

struct node node1, node3, node3;

3. Write C statements which will link the three nodes together, with node1 at the head of the list, node2
second, and node3 at the tail of the list. Assign the value NULL to node3.next to signify the end of the
list.

node1.next_node = &node2;
node2.next_node = &node3;
node3.next_node = (struct node *) NULL;

4. Using a pointer list, of type node, which has been initialised to the address of node1, write C
statements which will cycle through the list and print out the value of each nodes data field.

while(list != NULL) {
printf("%d\n", list->data);
list = list->next_node;

}

5. Assuming that pointer list points to node2, what does the following statement do?

list->next_node = (struct node *) NULL;

The statement writes a NULL into the next_node pointer, making node2 the
end of

119

the list, thereby erasing node3 from the list.

6. Assuming the state of the list is that as in 3., write C statements which will insert a new node
node1a between node1 and node2, using the pointer list (which is currently pointing to node1).
Assume that a pointer new_node points to node node1a.

new_node.next_node = list.next_node;
list.next_node = new_node;

7. Write a function called delete_node, which accepts a pointer to a list, and a pointer to the node to be
deleted from the list, eg

void delete_node(struct node *head, struct node *delnode);

void delete_node(struct node *head, struct node *delnode)
{

struct node *list;

list = head;
while(list->next != delnode) {

list = list->node;

list->next = delnode->next;
}

8. Write a function called insert_node, which accepts a pointer to a list, a pointer to a new node to be
inserted, and a pointer to the node after which the insertion takes place, eg

void insert_node(struct node *head, struct node *newnode, struct node
*prevnode);

void insert_node(struct node *head, struct node *newnode, struct node
*prevnode)

{
struct node *list;

list = head;
while(list != prevnode)

list = list->next;

newnode->next = list->next;
list->next = newnode;

}

120

DYNAMIC MEMORY ALLOCATION (CALLOC, SIZEOF, FREE)
It is desirable to dynamically allocate space for variables at runtime. It is wasteful when dealing with
array type structures to allocate so much space when declared, eg,

struct client clients[100];

This practice may lead to memory contention or programs crashing. A far better way is to allocate
space to clients when needed.

The C programming language allows users to dynamically allocate and deallocate memory when
required. The functions that accomplish this are calloc(), which allocates memory to a variable, sizeof,
which determines how much memory a specified variable occupies, and free(), which deallocates the
memory assigned to a variable back to the system.

SIZEOF
The sizeof() function returns the memory size of the requested variable. This call should be used in
conjunction with the calloc() function call, so that only the necessary memory is allocated, rather than
a fixed size. Consider the following,

struct date {
int hour, minute, second;

};

int x;

x = sizeof(struct date);

x now contains the information required by calloc() so that it can allocate enough memory to contain
another structure of type date.

CALLOC
This function is used to allocate storage to a variable whilst the program is running. The function takes
two arguments that specify the number of elements to be reserved, and the size of each element
(obtained from sizeof) in bytes. The function returns a character pointer (void in ANSI C) to the
allocated storage, which is initialized to zero's.

struct date *date_pointer;

date_pointer = (struct date *) calloc(10, sizeof(struct date));

121

The (struct date *) is a type cast operator which converts the pointer returned from calloc to a
character pointer to a structure of type date. The above function call will allocate size for ten such
structures, and date_pointer will point to the first in the chain.

FREE

When the variables are no longer required, the space which was allocated to them by calloc should be
returned to the system. This is done by,

free(date_pointer);

Other C calls associated with memory are,

alloc allocate a block of memory from the heap
malloc allocate a block of memory, do not zero out
zero zero a section of memory
blockmove move bytes from one location to another

Other routines may be included in the particular version of the compiler you may have, ie, for MS-
DOS v3.0,

memccpy copies characters from one buffer to another
memchr returns a pointer to the 1st occurrence of a

designated character searched for
memcmp compares a specified number of characters
memcpy copies a specified number of characters
memset initialise a specified number of bytes with a given

character
movedata copies characters

EXAMPLE OF DYNAMIC ALLOCATION

/* linked list example, pr101, 1994 */
#include <string.h>
#include <alloc.h>
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <conio.h>

/* definition of a node */

122

struct node {
 char data[20];
 struct node *next;
};

struct node * initialise(void);
void freenodes(struct node *);
int insert(struct node *);
void delete(struct node *, struct node *);
void list(struct node *);
void menu(struct node *, struct node *);
void readline(char []);

void readline(char buff[])
{
 int ch, loop = 0;

 ch = getche();
 while(ch != '\r') {
 buff[loop] = ch;
 loop++;
 ch = getche();
 }
 buff[loop] = 0;
}

struct node * initialise(void)
{
 return((struct node *) calloc(1, sizeof(struct node *)));
}

/* free memory allocated for node */
void freenodes(struct node *headptr)
{
 struct node *temp;
 while(headptr) {
 temp = headptr->next;
 free(headptr);
 headptr = temp;
 }
}

/* insert a new node after nodeptr, return 1 = success */
int insert(struct node *nodeptr)
{
 char buffer[20];
 struct node *newptr;

 newptr = initialise(); /* allocate a new node */
 if(newptr == NULL) {
 return 0;
 }
 else { /* fill in its data and add to the list */
 newptr->next = nodeptr->next;

123

 nodeptr->next = newptr;
 nodeptr = newptr;
 printf("\nEnter data --->");
 readline(buffer);
 strcpy(nodeptr->data, buffer);
 }
 return 1;
}

/* delete a node from list */
void delete(struct node *headptr, struct node *nodeptr)
{
 struct node *deletepointer, *previouspointer;
 char buffer[20];

 deletepointer = headptr->next;
 previouspointer = headptr;
 /* find the entry */
 printf("\nEnter name to be deleted --->");
 readline(buffer);
 while(deletepointer) {
 if(strcmp(buffer, deletepointer->data) == 0) {
 /* delete node pointed to by delete pointer */
 previouspointer->next = deletepointer->next;
 break;
 }
 else {
 /* goto next node in list */
 deletepointer = deletepointer->next;
 previouspointer = previouspointer->next;
 }
 }
 /* did we find it? */
 if(deletepointer == NULL)
 printf("\n\007Error, %s not found or list empty\n", buffer);
 else {
 free(deletepointer);
 /* adjust nodeptr to the last node in list */
 nodeptr = headptr;
 while(nodeptr->next != NULL)
 nodeptr = nodeptr->next;
 }
}

/* print out the list */
void list(struct node *headptr)
{
 struct node *listpointer;

 listpointer = headptr->next;
 if(listpointer == NULL)
 printf("\nThe list is empty.\n");
 else {
 while(listpointer) {
 printf("Name : %20s\n", listpointer->data);
 listpointer = listpointer->next;
 }

124

 }
}

/* main menu system */
void menu(struct node *headp, struct node *nodep)
{
 int menuchoice = 1;
 char buffer[20];

 while(menuchoice != 4) {
 printf("1 insert a node\n");
 printf("2 delete a node\n");
 printf("3 list nodes\n");
 printf("4 quit\n");
 printf("Enter choice -->");
 readline(buffer);
 menuchoice = atoi(buffer);
 switch(menuchoice) {
 case 1 : if(insert(nodep) == 0)
 printf("\n\007Insert failed.\n");
 break;
 case 2 : delete(headp, nodep); break;
 case 3 : list(headp); break;
 case 4 : break;
 default : printf("\n\007Invalid option\n"); break;
 }
 }
}

main()
{
 struct node *headptr, *nodeptr;
 headptr = initialise();
 nodeptr = headptr;
 headptr->next = NULL;
 menu(headptr, nodeptr);
 freenodes(headptr);
}

Another Linked List Example

/* linked list example */
#include <stdio.h>
#include <alloc.h>
#include <stdlib.h>
#include <conio.h>
#include <ctype.h>
#include <string.h>

/* function prototypes */
struct node * initnode(char *, int);
void printnode(struct node *);
void printlist(struct node *);

125

void add(struct node *);
struct node * searchname(struct node *, char *);
void deletenode(struct node *);
void insertnode(struct node *);
void deletelist(struct node *);

/* definition of a data node for holding student information */
struct node {
 char name[20];
 int id;
 struct node *next;
};

/* head points to first node in list, end points to last node in list */
/* initialise both to NULL, meaning no nodes in list yet */
struct node *head = (struct node *) NULL;
struct node *end = (struct node *) NULL;

/* this initialises a node, allocates memory for the node, and returns */
/* a pointer to the new node. Must pass it the node details, name and id */
struct node * initnode(char *name, int id)
{
 struct node *ptr;
 ptr = (struct node *) calloc(1, sizeof(struct node));
 if(ptr == NULL) /* error allocating node? */
 return (struct node *) NULL; /* then return NULL, else */
 else { /* allocated node successfully */
 strcpy(ptr->name, name); /* fill in name details */
 ptr->id = id; /* copy id details */
 return ptr; /* return pointer to new node */
 }
}

/* this prints the details of a node, eg, the name and id */
/* must pass it the address of the node you want to print out */
void printnode(struct node *ptr)
{
 printf("Name ->%s\n", ptr->name);
 printf("ID ->%d\n", ptr->id);
}

/* this prints all nodes from the current address passed to it. If you */
/* pass it 'head', then it prints out the entire list, by cycling through */
/* each node and calling 'printnode' to print each node found */
void printlist(struct node *ptr)
{
 while(ptr != NULL) /* continue whilst there are nodes left */
 {
 printnode(ptr); /* print out the current node */
 ptr = ptr->next; /* goto the next node in the list */
 }
}

/* this adds a node to the end of the list. You must allocate a node and */
/* then pass its address to this function */
void add(struct node *new) /* adding to end of list */
{

126

 if(head == NULL) /* if there are no nodes in list, then */
 head = new; /* set head to this new node */
 end->next = new; /* link in the new node to the end of the list */
 new->next = NULL; /* set next field to signify the end of list */
 end = new; /* adjust end to point to the last node */
}

/* search the list for a name, and return a pointer to the found node */
/* accepts a name to search for, and a pointer from which to start. If */
/* you pass the pointer as 'head', it searches from the start of the list */
struct node * searchname(struct node *ptr, char *name)
{
 while(strcmp(name, ptr->name) != 0) { /* whilst name not found */
 ptr = ptr->next; /* goto the next node */
 if(ptr == NULL) /* stop if we are at the */
 break; /* of the list */
 }
 return ptr; /* return a pointer to */
} /* found node or NULL */

/* deletes the specified node pointed to by 'ptr' from the list */
void deletenode(struct node *ptr)
{
 struct node *temp, *prev;
 temp = ptr; /* node to be deleted */
 prev = head; /* start of the list, will cycle to node before temp */

 if(temp == prev) { /* are we deleting first node */
 head = head->next; /* moves head to next node */
 if(end == temp) /* is it end, only one node? */
 end = end->next; /* adjust end as well */
 free(temp); /* free space occupied by node */
 }
 else { /* if not the first node, then */
 while(prev->next != temp) { /* move prev to the node before*/
 prev = prev->next; /* the one to be deleted */
 }
 prev->next = temp->next; /* link previous node to next */
 if(end == temp) /* if this was the end node, */
 end = prev; /* then reset the end pointer */
 free(temp); /* free space occupied by node */
 }
}

/* inserts a new node, uses name field to align node as alphabetical list */
/* pass it the address of the new node to be inserted, with details all */
/* filled in */
void insertnode(struct node *new)
{
 struct node *temp, *prev; /* similar to deletenode */

 if(head == NULL) { /* if an empty list, */
 head = new; /* set 'head' to it */
 end = new;
 head->next = NULL; /* set end of list to NULL */
 return; /* and finish */
 }

127

 temp = head; /* start at beginning of list */
 /* whilst currentname < newname to be inserted then */
 while(strcmp(temp->name, new->name) < 0) {
 temp = temp->next; /* goto the next node in list */
 if(temp == NULL) /* dont go past end of list */
 break;
 }

 /* we are the point to insert, we need previous node before we insert */
 /* first check to see if its inserting before the first node! */
 if(temp == head) {
 new->next = head; /* link next field to original list */
 head = new; /* head adjusted to new node */
 }
 else { /* okay, so its not the first node, a different approach */
 prev = head; /* start of the list, will cycle to node before temp */
 while(prev->next != temp) {
 prev = prev->next;
 }
 prev->next = new; /* insert node between prev and next */
 new->next = temp;
 if(end == prev) /* if the new node is inserted at the */
 end = new; /* end of the list the adjust 'end' */
 }
}

/* this deletes all nodes from the place specified by ptr */
/* if you pass it head, it will free up entire list */
void deletelist(struct node *ptr)
{
 struct node *temp;

 if(head == NULL) return; /* dont try to delete an empty list */

 if(ptr == head) { /* if we are deleting the entire list */
 head = NULL; /* then reset head and end to signify empty */
 end = NULL; /* list */
 }
 else {
 temp = head; /* if its not the entire list, readjust end */
 while(temp->next != ptr) /* locate previous node to ptr */
 temp = temp->next;
 end = temp; /* set end to node before ptr */
 }

 while(ptr != NULL) { /* whilst there are still nodes to delete */
 temp = ptr->next; /* record address of next node */
 free(ptr); /* free this node */
 ptr = temp; /* point to next node to be deleted */
 }
}

/* this is the main routine where all the glue logic fits */
main()
{
 char name[20];

128

 int id, ch = 1;
 struct node *ptr;

 clrscr();
 while(ch != 0) {
 printf("1 add a name \n");
 printf("2 delete a name \n");
 printf("3 list all names \n");
 printf("4 search for name \n");
 printf("5 insert a name \n");
 printf("0 quit\n");
 scanf("%d", &ch);
 switch(ch)
 {
 case 1: /* add a name to end of list */
 printf("Enter in name -- ");
 scanf("%s", name);
 printf("Enter in id -- ");
 scanf("%d", &id);
 ptr = initnode(name, id);
 add(ptr);
 break;
 case 2: /* delete a name */
 printf("Enter in name -- ");
 scanf("%s", name);
 ptr = searchname(head, name);
 if(ptr ==NULL) {
 printf("Name %s not found\n", name);
 }
 else
 deletenode(ptr);
 break;

 case 3: /* list all nodes */
 printlist(head);
 break;

 case 4: /* search and print name */
 printf("Enter in name -- ");
 scanf("%s", name);
 ptr = searchname(head, name);
 if(ptr ==NULL) {
 printf("Name %s not found\n", name);
 }
 else
 printnode(ptr);
 break;
 case 5: /* insert a name in list */
 printf("Enter in name -- ");
 scanf("%s", name);
 printf("Enter in id -- ");
 scanf("%d", &id);
 ptr = initnode(name, id);
 insertnode(ptr);
 break;

 }

129

 }
 deletelist(head);
}

PREPROCESSOR STATEMENTS
The define statement is used to make programs more readable, and allow the inclusion of macros.
Consider the following examples,

#define TRUE 1 /* Do not use a semi-colon , # must be first
character on line */

#define FALSE 0
#define NULL 0
#define AND &
#define OR |
#define EQUALS ==

game_over = TRUE;
while(list_pointer != NULL)

................

Macros
Macros are inline code which are substituted at compile time. The definition of a macro, which accepts
an argument when referenced,

#define SQUARE(x) (x)*(x)

y = SQUARE(v);

In this case, v is equated with x in the macro definition of square, so the variable y is assigned the
square of v. The brackets in the macro definition of square are necessary for correct evaluation. The
expansion of the macro becomes

y = (v) * (v);

Naturally, macro definitions can also contain other macro definitions,

#define IS_LOWERCASE(x) (((x)>='a') && ((x) <='z'))
#define TO_UPPERCASE(x) (IS_LOWERCASE (x)?(x)-'a'+'A':(x))

while(*string) {
*string = TO_UPPERCASE(*string);
++string;

}

130

CONDITIONAL COMPILATIONS
These are used to direct the compiler to compile/or not compile the lines that follow

#ifdef NULL
#define NL 10
#define SP 32
#endif

In the preceding case, the definition of NL and SP will only occur if NULL has been defined prior to
the compiler encountering the #ifdef NULL statement. The scope of a definition may be limited by

#undef NULL

This renders the identification of NULL invalid from that point onwards in the source file.

typedef
This statement is used to classify existing C data types, eg,

typedef int counter; /* redefines counter as an integer */
counter j, n; /* counter now used to define j and n as integers

*/

typedef struct {
int month, day, year;

} DATE;

DATE todays_date; /* same as struct date todays_date */

ENUMERATED DATA TYPES
Enumerated data type variables can only assume values which have been previously declared.

enum month { jan = 1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov,
dec };

enum month this_month;

this_month = feb;

131

In the above declaration, month is declared as an enumerated data type. It consists of a set of values,
jan to dec. Numerically, jan is given the value 1, feb the value 2, and so on. The variable this_month is
declared to be of the same type as month, then is assigned the value associated with feb. This_month
cannot be assigned any values outside those specified in the initialization list for the declaration of
month.

#include <stdio.h>

main()
{

char *pwest = "west",*pnorth = "north", *peast="east", *psouth =
"south";

enum location { east=1, west=2, south=3, north=4};
enum location direction;

direction = east;

if(direction == east)
printf("Cannot go %s\n", peast);

}

The variables defined in the enumerated variable location should be assigned initial values.

UNIONS
This is a special data type which looks similar to a structure, but is very different. The declaration is,

union mixed {
char letter;
float radian;
int number;

};

union mixed all;

The first declaration consists of a union of type mixed, which consists of a char, float, or int variable.
NOTE that it can be ONLY ONE of the variable types, they cannot coexist.

This is due to the provision of a single memory address which is used to store the largest variable,
unlike the arrangement used for structures.

132

Thus the variable all can only be a character, a float or an integer at any one time. The C language
keeps track of what all actually is at any given moment, but does not provide a check to prevent the
programmer accessing it incorrectly.

DECLARING VARIABLES TO BE REGISTER BASED
Some routines may be time or space critical. Variables can be defined as being register based by the
following declaration,

register int index;

DECLARING VARIABLES TO BE EXTERNAL
Here variables may exist in separately compiled modules, and to declare that the variable is external,

extern int move_number;

This means that the data storage for the variable move_number resides in another source module,
which will be linked with this module to form an executable program. In using a variable across a
number of independently compiled modules, space should be allocated in only one module, whilst all
other modules use the extern directive to access the variable.

NULL STATEMENTS
These are statements which do not have any body associated with them.

/* sums all integers in array a containing n elements and initializes */
/* two variables at the start of the for loop */
for(sum = 0, i = 0; i < n; sum += a[i++])

;

/* Copies characters from standard input to standard output until EOF is
reached */

for(; (c = getchar ()) != EOF; putchar (c))
;

STRINGS
Consider the following,

char *text_pointer = "Hello said the man.";

133

This defines a character pointer called text_pointer which points to the start of the text string 'Hello
said the man'. This message could be printed out by

printf("%s", text_pointer);

text_pointer holds the memory address of where the message is located in memory.

Lets append two strings together by using arrays.

#include <stdio.h>

main()
{

static char string1[]={'H','e','l','l','o',' ' };
static char string2[]={'s','a','i','d',' ','t','h','e','

','m','a','n','.' };
char string3[25];
int string_length1 = 6, string_length2 = 13, n;

for(n = 0; n < string_length1; ++n)
string3[n] = string1[n];

for(n = 0; n < string_length2; ++n)
string3[n + string_length1] = string2[n];

for(n = 0; n < (stringlength1+string_length2); ++n)
printf("%c", string3[n]);

}

Strings continued
There are times that the length of a string may not be known. Consider the following improvements by
terminating each string with a null character.

#include <stdio.h>

main()
{

static char string1[] = "Bye Bye ";
static char string2[] = "love.";
char string3[25];
int n = 0, n2;

for(; string1[n] != '\0'; ++n)
string3[n] = string1[n];

134

n2 = n; n = 0;

for(; string2[n] != '\0'; ++n)
string3[n2 + n] = string2[n];

n2 += n;

for(n = 0; n < n2 ; ++n)
printf("%c", string3[n]);

}

Minor modification to above program is,

string3[n2 + n] = '\0';
printf("%s", string3);

FURTHER IMPROVEMENTS by using POINTERS
The previous program still required the use of variables to keep track of string lengths. Implementing
concatenation by the use of pointers eliminates this, eg,

#include <stdio.h>

void concat(char *, char *, char *);

/* this functions copies the strings a and b to the destination string c
*/

void concat(char *a, char *b, char *c)
{

while(*a) { /* while(*c++ = *a++); */
*c = *a; ++a; ++c;

}
while(*b) {

*c = *b; ++b; ++c;
}
*c = '\0';

}

main()
{

static char string1[] = "Bye Bye ";
static char string2[] = "love.";
char string3[20];

concat(string1, string2, string3);
printf("%s\n", string3);

}

135

USING strcat IN THE LIBRARY ROUTINE string.h
The following program illustrates using the supplied function resident in the appropriate library file.
strcat() concatenates one string onto another and returns a pointer to the concatenated string.

#include <string.h>
#include <stdio.h>

main()
{

static char string1[] = "Bye Bye ";
static char string2[] = "love.";
char *string3;

string3 = strcat (string1, string2);
printf("%s\n", string3);

}

COMMAND LINE ARGUMENTS
It is possible to pass arguments to C programs when they are executed. The brackets which follow
main are used for this purpose. argc refers to the number of arguments passed, and argv[] is a pointer
array which points to each argument which is passed to main. A simple example follows, which checks
to see if a single argument is supplied on the command line when the program is invoked.

#include <stdio.h>

main(int argc, char *argv[])
{

if(argc == 2)
printf("The argument supplied is %s\n", argv[1]);

else if(argc > 2)
printf("Too many arguments supplied.\n");

else
printf("One argument expected.\n");

}

Note that *argv[0] is the name of the program invoked, which means that *argv[1] is a pointer to the
first argument supplied, and *argv[n] is the last argument. If no arguments are supplied, argc will be
one. Thus for n arguments, argc will be equal to n + 1. The program is called by the command line,

 myprog argument1

EXERCISE C27
Rewrite the program which copies files, ie, FCOPY.C to accept the source and destination filenames
from the command line. Include a check on the number of arguments passed.

136

Answer

Rewrite the program which copies files, ie, FCOPY.C to accept the source and destination filenames
from the command line. Include a check on the number of arguments passed.

#include <stdio.h>

main(int argc, char *argv[])
{

FILE *in_file, *out_file, *fopen();
int c;

if(argc != 3)
{

printf("Incorrect, format is FCOPY source dest\n");
exit(2);

}
in_file = fopen(argv[1], "r");
if(in_file == NULL) printf("Cannot open %s for reading\n",

argv[1]);
else {

out_file = fopen(argv[2], "w");
if (out_file == NULL)

printf("Cannot open %s for writing\n", argv[2]);
else {

printf("File copy program, copying %s to %s\n",
argv[1], argv[2]);

while ((c=getc(in_file)) != EOF)
putc(c, out_file);

putc(c, out_file); /* copy EOF */
printf("File has been copied.\n");
fclose(out_file);

}
fclose(in_file);

}
}

POINTERS TO FUNCTIONS
A pointer can also be declared as pointing to a function. The declaration of such a pointer is done by,

int (*func_pointer)();

The parentheses around *func_pointer are necessary, else the compiler will treat the declaration as a
declaration of a function. To assign the address of a function to the pointer, the statement,

func_pointer = lookup;

137

http://www.dsi.unive.it/~franz/c_program/c_105a.htm

where lookup is the function name, is sufficient. In the case where no arguments are passed to lookup,
the call is

(*func_pointer)();

The parentheses are needed to avoid an error. If the function lookup returned a value, the function call
then becomes,

i = (*func_pointer)();

If the function accepted arguments, the call then becomes,

i = (*func_pointer)(argument1, argument2, argumentn);

SAMPLE CODE FOR POINTERS TO FUNCTIONS
Pointers to functions allow the creation of jump tables and dynamic routine selection. A pointer is
assigned the start address of a function, thus, by typing the pointer name, program execution jumps to
the routine pointed to.

By using a single pointer, many different routines could be executed, simply by re-directing the pointer
to point to another function. Thus, programs could use this to send information to a printer, console
device, tape unit etc, simply by pointing the pointer associated with output to the appropriate output
function!

The following program illustrates the use of pointers to functions, in creating a simple shell program
which can be used to specify the screen mode on a CGA system.

#include <stdio.h> /* Funcptr.c */
#include <dos.h>

#define dim(x) (sizeof(x) / sizeof(x[0]))
#define GETMODE 15
#define SETMODE 0
#define VIDCALL 0X10
#define SCREEN40 1
#define SCREEN80 3
#define SCREEN320 4
#define SCREEN640 6
#define VID_BIOS_CALL(x) int86(VIDCALL, &x, &x)

int cls(), scr40(), scr80(), scr320(), scr640(), help(), shellquit();
union REGS regs;

138

struct command_table
{
 char *cmd_name;
 int (*cmd_ptr) ();
}
cmds[]={"40",scr40,"80",scr80,"320",scr320,"640",scr640,"HELP",help,"CLS",cls,"EXI
T",\
 shellquit};

cls()
{
 regs.h.ah = GETMODE; VID_BIOS_CALL(regs);
 regs.h.ah = SETMODE; VID_BIOS_CALL(regs);
}

scr40()
{
 regs.h.ah = SETMODE;
 regs.h.al = SCREEN40;
 VID_BIOS_CALL(regs);
}

scr80()
{
 regs.h.ah = SETMODE;
 regs.h.al = SCREEN80;
 VID_BIOS_CALL(regs);
}

scr320()
{
 regs.h.ah = SETMODE;
 regs.h.al = SCREEN320;
 VID_BIOS_CALL(regs);
}

scr640()
{
 regs.h.ah = SETMODE;
 regs.h.al = SCREEN640;
 VID_BIOS_CALL(regs);
}

shellquit()
{
 exit(0);
}

help()
{
 cls();
 printf("The available commands are; \n");
 printf(" 40 Sets 40 column mode\n");
 printf(" 80 Sets 80 column mode\n");
 printf(" 320 Sets medium res graphics mode\n");
 printf(" 640 Sets high res graphics mode\n");
 printf(" CLS Clears the display screen\n");

139

 printf(" HELP These messages\n");
 printf(" EXIT Return to DOS\n");
}

get_command(buffer)
char *buffer;
{
 printf("\nShell: ");
 gets(buffer);
 strupr(buffer);
}

execute_command(cmd_string)
char *cmd_string;
{
 int i, j;
 for(i = 0; i < dim(cmds); i++)
 {
 j = strcmp(cmds[i].cmd_name, cmd_string);
 if(j == 0)
 {
 (*cmds[i].cmd_ptr) ();
 return 1;
 }
 }
 return 0;
}

main()
{
 char input_buffer[81];
 while(1)
 {
 get_command(input_buffer);
 if(execute_command(input_buffer) == 0)
 help();
 }
}

FORMATTERS FOR STRINGS/CHARACTERS
Consider the following program.

#include <stdio.h>

main() /* FORMATS.C */
{

char c = '#';
static char s[] = "helloandwelcometoclanguage";

printf("Characters:\n");
printf("%c\n", c);

140

printf("%3c%3c\n", c, c);
printf("%-3c%-3c\n", c, c);
printf("Strings:\n");
printf("%s\n", s);
printf("%.5s\n", s);
printf("%30s\n", s);
printf("%20.5s\n", s);
printf("%-20.5s\n", s);

}

The output of the above program will be,

 Characters:
 #
 # #
 # #
 Strings:
 helloandwelcometoclanguage
 hello
 helloandwelcometoclanguage
 hello
 hello

The statement printf("%.5s\n",s) means print the first five characters of the array s. The statement
printf("%30s\n", s) means that the array s is printed right justified, with leading spaces, to a field width
of thirty characters.

The statement printf("%20.5s\n", s) means that the first five characters are printed in a field size of
twenty which is right justified and filled with leading spaces.

The final printf statement uses a left justified field of twenty characters, trailing spaces, and the .5
indicating to print the first five characters of the array s.

SYSTEM CALLS
Calls may be made to the Operating System to execute standard OPsys calls, eg,

#include <process.h>
main() /* SYS.C */
{

char *command = "dir";

system("cls");
system(command);

}

Do not use this method to invoke other programs. Functions like exec() and spawn() are used for this.

141

Suggested Model Answers

Exercise C1 The program output is,

Prog1

Programming in C is easy.
And so is Pascal.

Prog2

The black dog was big. The cow jumped over the moon.

Prog3

Hello...
..oh my
...when do i stop?

Exercise C2 Typical program output is,

The sum of 35 and 18 is 53

Exercise C3 Invalid variable names,

value$sum - must be an underscore, $ sign is illegal
exit flag - no spaces allowed
3lotsofmoney - must start with a-z or an underscore
char - reserved keyword

When %X\n is used, the hex digits a to f become A to F

Exercise C4 Constants

#define smallvalue 0.312
#define letter 'W'
#define smallint 37

Exercise C5

The % of 50 by 10 is 0.00

Exercise C6

#include <stdio.h>

142

http://www.dsi.unive.it/~franz/c_program/c_020.htm#c6
http://www.dsi.unive.it/~franz/c_program/c_013.htm#c5
http://www.dsi.unive.it/~franz/c_program/c_010.htm#c4
http://www.dsi.unive.it/~franz/c_program/c_005.htm#c3
http://www.dsi.unive.it/~franz/c_program/c_003.htm#c2
http://www.dsi.unive.it/~franz/c_program/c_001.htm#c1

main ()
{

int n = 1, t_number = 0;

for (; n <= 200; n++)
t_number = t_number + n;

printf("The 200th triangular number is %d\n", t_number);
}

Exercise C7

a == 2 this is an equality test
a = 2 this is an assignment

/* program which illustrates relational assignments */
#include <stdio.h>

main()
{

int val1 = 50, val2 = 20, sum = 0;

printf("50 + 20 is %d\n", val1 + val2);
printf("50 - 20 is %d\n", val1 - val2);
printf("50 * 20 is %d\n", val1 * val2);
printf("50 / 20 is %d\n", val1 / val2);

}

Exercise C8

Prints result with two leading places

Exercise C9

main()
{

int n = 1, t_number = 0, input;

printf("Enter a number\n");
scanf("%d", &input);
for(; n <= input; n++)

t_number = t_number + n;

printf("The triangular_number of %d is %d\n", input, t_number);
}

Exercise C10

 #include <stdio.h>

 main()

143

http://www.dsi.unive.it/~franz/c_program/c_024.htm#c10
http://www.dsi.unive.it/~franz/c_program/c_020.htm#exc9
http://www.dsi.unive.it/~franz/c_program/c_020.htm#c8
http://www.dsi.unive.it/~franz/c_program/c_020.htm#c7

 {
 int grade; /* to hold the entered grade */
 float average; /* the average mark */
 int loop; /* loop count */
 int sum; /* running total of all entered grades */
 int valid_entry; /* for validation of entered grade */
 int failures; /* number of people with less than 65 */

 sum = 0; /* initialise running total to 0 */
 failures = 0;

 for(loop = 0; loop < 5; loop = loop + 1)
 {
 valid_entry = 0;
 while(valid_entry == 0)
 {
 printf("Enter mark (1-100):");
 scanf(" %d", &grade);
 if ((grade > 1) && (grade < 100))
 {
 valid_entry = 1;
 }
 }
 if(grade < 65)
 failures++;
 sum = sum + grade;
 }
 average = (float) sum / loop;
 printf("The average mark was %.2f\n", average);
 printf("The number less than 65 was %d\n", failures);
 }

Exercise C11

#include <stdio.h>

main ()
{
 int invalid_operator = 0;
 char operator;
 float number1, number2, result;

 printf("Enter two numbers and an operator in the format\n");
 printf(" number1 operator number2\n");
 scanf("%f %c %f", &number1, &operator, &number2);

 switch(operator)
 {
 case '*' : result = number1 * number2; break;
 case '-' : result = number1 - number2; break;
 case '/' : result = number1 / number2; break;
 case '+' : result = number1 + number2; break;
 default : invalid_operator = 1;
 }

144

http://www.dsi.unive.it/~franz/c_program/c_028.htm#c11

 switch (invalid_operator)
 {
 case 1: printf("Invalid operator.\n"); break;
 default: printf("%2.2f %c %2.2f is %2.2f\n",
 number1,operator,number2,result); break;
 }
}

Exercise C12

max_value = 5

Exercise C13

#include <stdio.h>

main()
{

static int m[][] = { {10,5,-3}, {9, 0, 0}, {32,20,1}, {0,0,8} };
int row, column, sum;

sum = 0;
for(row = 0; row < 4; row++)

for(column = 0; column < 3; column++)
sum = sum + m[row][column];

printf("The total is %d\n", sum);
}

Exercise C14
 Variables declared type static are initialised to zero. They are created and
initialised only once, in their own data segment. As such, they are permanent,
and still remain once the function terminates (but disappear when the program
terminates).

 Variables which are not declared as type static are type automatic by default.
C creates these on the stack, thus they can assume non zero values when created,
and also disappear once the function that creates them terminates.

Exercise C15

#include <stdio.h>
int calc_result(int, int, int);

int calc_result(int var1, int var2, int var3)
{
 int sum;

 sum = var1 + var2 + var3;
 return(sum); /* return(var1 + var2 + var3); */
}

main()
{

145

http://www.dsi.unive.it/~franz/c_program/c_045.htm#c15
http://www.dsi.unive.it/~franz/c_program/c_037.htm#c14
http://www.dsi.unive.it/~franz/c_program/c_037.htm#c13
http://www.dsi.unive.it/~franz/c_program/c_033.htm#c12

 int numb1 = 2, numb2 = 3, numb3=4, answer=0;

 answer = calc_result(numb1, numb2, numb3);
 printf("%d + %d + %d = %d\n", numb1, numb2, numb3, answer);
}

Exercise C16

#include <stdio.h>

int add2darray(int [][5], int); /* function prototype */

int add2darray(int array[][5], int rows)
{

int total = 0, columns, row;

for(row = 0; row < rows; row++)
for(columns = 0; columns < 5; columns++)

total = total + array[row][columns];
return total;

}

main()
{

int numbers[][] = { {1, 2, 35, 7, 10}, {6, 7, 4, 1, 0} };
int sum;

sum = add2darray(numbers, 2);
printf("the sum of numbers is %d\n", sum);

}

Exercise C17

time = time - 5;
a = a * (b + c);

Exercise C18

#include <stdio.h>
void sort_array(int [], int);

void sort_array(values, number_of_elements)
int values[], number_of_elements;
{
 int index_pointer, base_pointer = 0, temp;

 while (base_pointer < (number_of_elements - 1))
 {
 index_pointer = base_pointer + 1;
 while (index_pointer < number_of_elements)
 {
 if(values[base_pointer] > values[index_pointer])

146

http://www.dsi.unive.it/~franz/c_program/c_052.htm#c18
http://www.dsi.unive.it/~franz/c_program/c_051.htm#c17
http://www.dsi.unive.it/~franz/c_program/c_049.htm#c16

 {
 temp = values[base_pointer];
 values[base_pointer] = values[index_pointer];
 values[index_pointer] = temp;
 }
 ++index_pointer;
 }
 ++base_pointer;
 }
}

main ()
{
 static int array[] = { 4, 0, 8, 3, 2, 9, 6, 1, 7, 5 };
 int number_of_elements = 10, loop_count = 0;

 printf("Before the sort, the contents are\n");
 for (; loop_count < number_of_elements; ++loop_count)
 printf("Array[%d] is %d\n", loop_count,array[loop_count]);

 sort_array(array, number_of_elements);

 printf("After the sort, the contents are\n");
 loop_count = 0;
 for(; loop_count < number_of_elements; ++loop_count)
 printf("Array[%d] is %d\n", loop_count,array[loop_count]);
}

Exercise C19

#include <stdio.h>
long int triang_rec(long int);

long int triang_rec(long int number)
{
 long int result;

 if(number == 0l)
 result = 0l;
 else
 result = number + triang_rec(number - 1);
 return(result);
}

main ()
{
 int request;
 long int triang_rec(), answer;

 printf("Enter number to be calculated.\n");
 scanf("%d", &request);

 answer = triang_rec((long int) request);
 printf("The triangular answer is %l\n", answer);
}

147

http://www.dsi.unive.it/~franz/c_program/c_053.htm#c19

Note this version of function triang_rec

#include <stdio.h>
long int triang_rec(long int);

long int triang_rec(long int number)
{
 return((number == 0l) ? 0l : number*triang_rec(number-1));
}

Exercise C20

b

Exercise C21

#include <stdio.h>

struct date {
int day, month, year;

};

int days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
struct date today, tommorrow;

void gettodaysdate(void);

void gettodaysdate(void)
{

int valid = 0;

while(valid == 0) {
printf("Enter in the current year (1990-1999)-->");
scanf("&d", &today.year);
if((today.year < 1990) || (today.year > 1999))

printf("\007Invalid year\n");
else

valid = 1;
}
valid = 0;
while(valid == 0) {

printf("Enter in the current month (1-12)-->");
scanf("&d", &today.month);
if((today.month < 1) || (today.month > 12))

printf("\007Invalid month\n");
else

valid = 1;
}
valid = 0;
while(valid == 0) {

printf("Enter in the current day (1-%d)-->",
days[today.month-1]);

148

http://www.dsi.unive.it/~franz/c_program/c_061.htm#c21
http://www.dsi.unive.it/~franz/c_program/c_058.htm#c20

scanf("&d", &today.day);
if((today.day < 1) || (today.day > days[today.month-1]))

printf("\007Invalid day\n");
else

valid = 1;
}

}

main()
{

gettodaysdate();
tommorrow = today;
tommorrow.day++;
if(tommorrow.day > days[tommorrow.month-1]) {

tommorrow.day = 1;
tommorrow.month++;
if(tommorrow.month > 12)

tommorrow.year++;
}
printf("Tommorrows date is %02d:%02d:%02d\n", \

tommorrow.day, tommorrow.month, tommorrow.year);
}

Exercise C22

#include <stdio.h>

struct date { /* Global definition of date */
int day, month, year;

};

main()
{

struct date dates[5];
int i;

for(i = 0; i < 5; ++i) {
printf("Please enter the date (dd:mm:yy)");
scanf("%d:%d:%d", &dates[i].day, &dates[i].month,

&dates[i].year);
}

}

Exercise C23

count = 10, x = 10;

Q Q
/ /
((

Exercise C24

i1 = 5, i2 = 12, *p1 = 5; *p2 = 5

149

http://www.dsi.unive.it/~franz/c_program/c_077.htm#c24
http://www.dsi.unive.it/~franz/c_program/c_077.htm
http://www.dsi.unive.it/~franz/c_program/c_064.htm#c22

Exercise C25

Name = Baked Beans
ID = 312
Price = 2.75

Exercise C26

Name = Apple Pie
ID = 123
Price = 1.65

Name = Greggs Coffee
ID = 773
Price = 3.20

Exercise C27

#include <stdio.h>

main(int argc, char *argv[])
{
 FILE *in_file, *out_file, *fopen();
 int c;

 if(argc != 3)
 {
 printf("Incorrect, format is FCOPY source dest\n");
 exit(2);
 }
 in_file = fopen(argv[1], "r");
 if(in_file == NULL) printf("Cannot open %s for reading\n", argv[1]);
 else
 {
 out_file = fopen(argv[2], "w");
 if (out_file == NULL) printf("Cannot open %s for writing\n",

argv[2]);
 else
 {
 printf("File copy program, copying %s to %s\n", argv[1], argv[2]);
 while ((c=getc(in_file)) != EOF) putc(c, out_file);
 putc(c, out_file); /* copy EOF */
 printf("File has been copied.\n");
 fclose(out_file);
 }
 fclose(in_file);
 }
}

Practise Exercise 1: Answers

150

http://www.dsi.unive.it/~franz/c_program/c_012.htm
http://www.dsi.unive.it/~franz/c_program/c_105.htm#c27
http://www.dsi.unive.it/~franz/c_program/c_084.htm
http://www.dsi.unive.it/~franz/c_program/c_083.htm

1. int sum;

2. char letter;

3. #define TRUE 1

4. float money;

5. double arctan;

6. int total = 0;

7. int loop;

8. #define GST 0.125

Practise Exercise 2: Answers

1. total = number1;

2. sum = loop_count + petrol_cost;

3. discount = total / 10;

4. letter = 'W';

5. costing = (float) sum / 0.25;

Practise Exercise 3: Answers

1. printf("%d", sum);

2. printf("Welcome\n");

3. printf("%c", letter);

4. printf("%f", discount);

5. printf("%.2f", dump);

6. scanf("%d", &sum);

7. scanf("%f", &discount_rate);

8. scanf(" %c", &operator);

Practise Exercise 4: Answers

1. for(loop = 1; loop <= 10; loop++)
 printf("%d\n", loop);

2. for(loop = 1; loop <= 5; loop++) {
 for(count = 1; count <= loop; count++)

151

http://www.dsi.unive.it/~franz/c_program/c_021.htm
http://www.dsi.unive.it/~franz/c_program/c_017.htm
http://www.dsi.unive.it/~franz/c_program/c_014.htm

 printf("%d", loop);
 printf("\n");
}

3. total = 0;
for(loop = 10; loop <= 100; loop++)
 total = total + loop;

or

for(loop = 10, total = 0; loop <= 100; loop++)
 total = total + loop;

5. for(loop = 'A'; loop <= 'Z'; loop++)
 printf("%c", loop);

Practise Exercise 5: Answers

1. loop = 1;
while(loop <= 10) {

printf("%d", loop);
loop++;

}

2. loop = 1;
while (loop <= 5) {

count = 1;
while(count <= loop)

printf("%d", loop);
printf("\n");

}

3. if(sum < 65)
printf("Sorry. Try again");

4. if(total == good_guess)
printf("%d", total);

else
printf("%d", good_guess);

Practise Exercise 6: Answers

1. if((sum == 10) && (total < 20))
printf("incorrect.");

2. if((flag == 1) || (letter != 'X'))
exit_flag = 0;

else
exit_flag = 1;

3. switch(letter) {
case 'X' : sum = 0; break;
case 'Z' : valid_flag = 1; break;
case 'A' : sum = 1; break;

152

http://www.dsi.unive.it/~franz/c_program/c_029.htm
http://www.dsi.unive.it/~franz/c_program/c_026.htm

default: printf("Unknown letter -->%c\n", letter); break;
}

Practise Exercise 7: Answers

1. char letters[10];

2. letters[3] = 'Z';

3. total = 0;
for(loop = 0; loop < 5; loop++)

total = total + numbers[loop];

4. float balances[3][5];

5. total = 0.0;
for(row = 0; row < 3; row++)

for(column = 0; column < 5; column++)
total = total + balances[row][column];

6. char words[] = "Hello";

7. strcpy(stuff, "Welcome");

8. printf("%d", totals[2]);

9. printf("%s", words);

10. scanf(" %s", &words[0]);

or

scanf(" %s", words);

11. for(loop = 0; loop < 5; loop++)
 scanf(" %c", &words[loop]);

Practise Exercise 8: Answers

1. void menu(void)
{

printf("Menu choices");
}

2. void menu(void);

3. void print(char message[])
{

printf("%s", message);
}

4. void print(char []);

5. int total(int array[], int elements)

153

http://www.dsi.unive.it/~franz/c_program/c_054.htm
http://www.dsi.unive.it/~franz/c_program/c_041.htm

{
int count, total = 0;
for(count = 0; count < elements; count++)

total = total + array[count];
return total;

}

6. int total(int [], int);

Practise Exercise 9: Answers

1. struct client {
int count;
char text[10];
float balance;

};

2. struct date today;

3. struct client clients[10];

4. clients[2].count = 10;

5. printf("%s", clients[0].text);

6. struct birthdays
{

struct time btime;
struct date bdate;

};

Practise Exercise 9A: Answers

1. FILE *input_file;

2. input_file = fopen("results.dat", "rt");

3. if(input_file == NULL) {
printf("Unable to open file.\n");\
exit(1);

}

4. int ch, loop = 0;

ch = fgetc(input_file);
while(ch != '\n') {

buffer[loop] = ch;
loop++;
ch = fgetc(input_file);

}
buffer[loop] = NULL;

5. fclose(input_file);

154

http://www.dsi.unive.it/~franz/c_program/c_074.htm
http://www.dsi.unive.it/~franz/c_program/c_067.htm

Practise Exercise 10: Answers

1. int *address;

2. temp = &balance;

3. *letter = 'W';

4. count = 20, *temp = 20, sum = 20

5. char *message = "Hello";

6. array = (char *) getmem(200);

Practise Exercise 11: Answers

1. struct date *dates;

2. (*dates).day = 10;
or
dates->day = 10;

3. struct machine {
int name;
char *memory;

};

4. mpu641->memory = (char *) NULL;

5. mpu641->memory = CPUtype;

[-> means mpu641 is a pointer to a structure]
[memory is a pointer, so is assigned an address (note &)

]
[the name of an array is equivalent to address of first element

]

6. mpu641->name = 10;

[-> means mpu641 is a pointer to a structure]
[name is a variable, so normal assignment is possible]

7. *(times->day) = 10;

[-> means times is a pointer to a structure]
[day is a pointer, so to assign a value requires * operator]
[*times->day is not quite correct]
[using the pointer times, goto the day field] times-

>day
[this is an address] x
[let the contents of this address be equal to 10]

*(x) = 10

155

http://www.dsi.unive.it/~franz/c_program/c_081.htm
http://www.dsi.unive.it/~franz/c_program/c_0771.htm#p10

8. *(times[2]->month) = 12;

Practise Exercise 11a: Answers
1. Before call to editrecord()
 item.name = "Red Plum Jam"
 item.id = 0
 item.price = 0.0

2. After return from editrecord()
 item.name = "Baked Beans"
 item.id = 220
 item.price = 2.20

3. The final values of values, item.name, item.id, item.price
 item.name = "Baked Beans"
 item.id = 220
 item.price = 2.75

Practise Exercise 12: Answers

1. struct node {
int data;
struct node *next_node;

};

2. struct node node1, node2, node3;

3. node1.next = &node2;
node2.next = &node3;
node3.next = (struct node *) NULL;

4. while(list != (struct node *) NULL) {
printf("data = %d\n", list->data);
list = list->next_node;

}

5. terminates the list at node2, effectively deleting node3 from the list.

6. new_node->next = list->next;
list->next = new_node;

7. void delete_node(struct node *head, struct node *delnode)
{

struct node *list;

list = head;
while(list->next != delnode) {

list = list->node;

list->next = delnode->next;
}

156

http://www.dsi.unive.it/~franz/c_program/c_088.htm
http://www.dsi.unive.it/~franz/c_program/c_082.htm

8. void insert_node(struct node *head, struct node *newnode, struct node
*prevnode)

{
struct node *list;

list = head;
while(list != prevnode)

list = list->next;

newnode->next = list->next;
list->next = newnode;

}

Practise Exercise 13: Answers

1. FILE *input_file;

2. input_file = fopen("results.dat", "rt");

3. if(input_file == NULL) {
printf("Unable to open file\n");
exit(1);

}

4. loop = 0;
ch = fgetc(input_file);
while((ch != '\n') && (ch != EOF)) {

buffer[loop] = ch;
loop++;
ch = fgetc(input_file);

}
buffer[loop] = 0;

5. fclose(input_file);

157

http://www.dsi.unive.it/~franz/c_program/c_074.htm

	C Programming
	An Introduction
	About C
	Common C
	ANSI C

	A Simple Program
	Practise Exercise 1: Defining Variables
	Answers to Practise Exercise 1: Defining Variables
	Practise Exercise 2: Assignments
	Answers: Practise Exercise 2: Assignments

	Practise Exercise 3: printf() and scanf()
	Answers: Practise Exercise 3: printf() and scanf()

	Practise Exercise 4: for loops
	Practise Exercise 5: while loops and if else
	COMPOUND RELATIONALS (AND, NOT, OR, EOR)
	COMPOUND RELATIONALS (AND, NOT, OR, EOR)
	COMPOUND RELATIONALS (AND, NOT, OR, EOR)

	Practise Exercise 6
	Compound Relationals and switch
	ACCEPTING SINGLE CHARACTERS FROM THE KEYBOARD
	BUILT IN FUNCTIONS FOR STRING HANDLING
	Validation Of User Input In C
	Basic Rules

	ARRAYS

	Practise Exercise 7: Arrays
	LOCAL AND GLOBAL VARIABLES

	Functions and Arrays
	# EXERCISE C16: Write a C program incorporating a function to add all elements of a two dimensional array. The number of rows are to be passed to the function, and it passes back the total sum of all elements (Use at least a 4 x 4 array).
	
	# EXERCISE C18: Implement the above algorithm as a function in C, accepting the array and its size, returning the sorted array in ascending order so it can be printed out by the calling module. The array should consist of ten elements.
	Practise Exercise 8: Functions
	Example of scanf() modifiers

	Practise Exercise 9: Structures
	Practise Exercise 9A: File Handling
	Practise Exercise 10: Pointers
	Practise Exercise 11a: Pointers & Structures

	Practise Exercise 12: Lists
	Practise Exercise 12: Lists
	Macros
	Suggested Model Answers

